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Abstract

Bladder cancer (BCA) is relatively common and potentially recurrent/progressive disease. It

is also costly to detect, treat, and control. Definitive diagnosis is made by examination of

urine sediment, imaging, direct visualization (cystoscopy), and invasive biopsy of suspect

bladder lesions. There are currently no widely-used BCA-specific biomarker urine screening

tests for early BCA or for following patients during/after therapy. Urine metabolomic screen-

ing for biomarkers is costly and generally unavailable for clinical use. In response, we devel-

oped Raman spectroscopy-based chemometric urinalysis (Rametrix™) as a direct liquid

urine screening method for detecting complex molecular signatures in urine associated with

BCA and other genitourinary tract pathologies. In particular, the RametrixTM screen used

principal components (PCs) of urine Raman spectra to build discriminant analysis models

that indicate the presence/absence of disease. The number of PCs included was varied,

and all models were cross-validated by leave-one-out analysis. In Study 1 reported here, we

tested the Rametrix™ screen using urine specimens from 56 consented patients from a

urology clinic. This proof-of-concept study contained 17 urine specimens with active BCA

(BCA-positive), 32 urine specimens from patients with other genitourinary tract pathologies,

seven specimens from healthy patients, and the urinalysis control SurineTM. Using a model

built with 22 PCs, BCA was detected with 80.4% accuracy, 82.4% sensitivity, 79.5% speci-

ficity, 63.6% positive predictive value (PPV), and 91.2% negative predictive value (NPV).

Based on the number of PCs included, we found the RametrixTM screen could be fine-tuned

for either high sensitivity or specificity. In other studies reported here, RametrixTM was also

able to differentiate between urine specimens from patients with BCA and other genitouri-

nary pathologies and those obtained from patients with end-stage kidney disease (ESKD).

While larger studies are needed to improve RametrixTM models and demonstrate clinical rel-

evance, this study demonstrates the ability of the RametrixTM screen to differentiate urine of
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BCA-positive patients. Molecular signature variances in the urine metabolome of BCA

patients included changes in: phosphatidylinositol, nucleic acids, protein (particularly colla-

gen), aromatic amino acids, and carotenoids.

Introduction

Bladder cancer (BCA) is common and the most costly type of cancer to treat [1]. More than

80,000 new cases were expected to be diagnosed in 2019 (4.6% of all newly-diagnosed cancer

cases), and almost 18,000 patients would die due to tumor progression and treatment failure

[2]. There are currently over 577,400 patients under treatment [3]. The five-year survival rate

for BCA is 77.4%, and early stage disease is correlated with better five-year survival (Stage

0–98%, Stage 1–88%, Stage 2–63%). Five-year survival is worse for more advanced stages

(Stage 3–46%, Stage 4–15%). Approximately 30% of all new muscle-invasive cases are first

diagnosed in Stages 2–4 [4].

Early detection of asymptomatic BCA is problematic. The onset of clinical symptoms (e.g.,

hematuria, dysuria, urgency, lower back pain) usually triggers further clinical and diagnostic

investigation [5–7]. Routine urinalysis is not useful for early BCA detection, and the signifi-

cance of minimal hematuria in specimens is debatable [8,9]. Definitive diagnosis of BCA in

symptomatic patients is accomplished with a combination of imaging studies, urine cytology,

direct bladder examination (i.e., cystoscopy) and tests for BCA biomarkers [10–16]. None of

the current urine-based biomarker tests have gained wide acceptance or become a standard-

of-care for screening or patient follow-up [17–19].

Several groups have investigated the use of urine metabolomic profiling for detection or

clinical follow-up of BCA. Boutara and co-workers [20] used urine metabolomic profiling to

characterize thousands of unique molecules in normal urine, and Shi et. al. [21] reviewed the

current literature on BCA-associated metabolomic markers. Burton and Ma [22] reported

alterations in metabolic pathways and the presence of pteridines, acylcarnitine derivatives, and

nucleic acid metabolites in the urine of BCA patients. In related work, Kalim and Rhee [23],

Hao et. al. [24], and Grams et. al. [25] used metabolomic profiling of blood and urine to detect

renal disease and produced unique data that could be used to differentiate upper and lower

urinary tract pathologies, such as BCA.

All current diagnostic procedures, including testing for urine-based biomarkers, are either

(i) costly, (ii) require some degree of expertise to achieve valid results, (iii) invasive, (iv) not

reliably sensitive or specific, (v) highly dependent on sample quality and stage of tumor

growth, (vi) analytical resource intensive (e.g., requiring mass spectroscopy), and/or (vii) not

scalable for mass screening. A simple, non-invasive and reliable screening technology for

detection of BCA could reduce the use of invasive and costly evaluation tests for the patients

unlikely to have cancer, and expedite the diagnosis and treatment for those who do. For BCA

surveillance, such a test could improve the identification of the disease recurrence/progression,

and reduce cystoscopy in patients with low risk.

Unlike some other tumors (e.g., prostate cancer), no case of BCA can be left untreated,

since it will predictably become symptomatic and will progress without treatment. The earlier

a tumor is diagnosed, the greater the chances are that BCA will be curable or controllable, or

that less aggressive treatment can be used (i.e., bladder-sparing therapies). Thus, an accurate,

non-invasive screening technology could be used clinically for annual urinalysis of the popula-

tion at increased risk for developing BCA (e.g., users of tobacco products; >27 million people

in the US) [7], for monitoring the efficacy of therapy in patients who have BCA (over 577,000

people), and monitoring patients for tumor recurrence/progression.
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We have developed a novel screening technology, Raman chemometric urinalysis (Rame-

trixTM), for use in detecting BCA markers (multi-molecular signatures) in urine. RametrixTM

is based on Raman spectroscopic analysis of urine and multivariate statistical analysis of the

spectral data. Raman spectroscopy, itself, is a mature, well-studied, powerful technology that

has been applied routinely to analyze the chemical composition of a wide variety of solid, liq-

uid, and biological samples [26–33]. For analysis, a sample is excited by a monochromatic

laser, and the resulting spectrum shows the intensity of Raman scattered radiation (arising

from chemical bond rotations, stretching, and bending) as a function of frequency [34]. When

applied to the analysis of urine, Raman spectroscopy has the following advantages: (i) it is

label-free and requires minimal sample preparation, (ii) chemical composition data is returned

in near/real-time, (iii) there is minimal spectral interference from water (unlike infrared meth-

ods), (iv) scanning through glass is possible, (v) it is non-destructive to the sample, and (vi) it

can be easily scaled for large numbers of samples (through automation). These advantages

make Raman spectroscopy an attractive method for screening urine for the detection of BCA

and other urinary tract pathologies.

Urine contains hundreds of individual molecules that reflect metabolism and health, as well

as the important physiologic activities of the urinary system [20]. The composition is highly

variable among individuals and, in fact, varies substantially in every individual, every day,

depending on activity, diet, metabolism, ingestion of exogenous drugs and chemicals, state of

hydration, and renal function. In a single Raman spectral scan (obtained in < 5 minutes),

many of these molecules can be identified easily and reliably as spectral bands that can be cor-

related to analytical standards in Raman reference libraries. For example, small molecules

(e.g., urea, creatinine, uric acid, glucose) and macromolecules commonly used to assess health

and renal function all produce Raman intensity bands at specific wave numbers. These collec-
tively create a unique spectral “fingerprint” of a urine specimen’s molecular composition.

Understandably, the presence of BCA and other bladder pathologies has a profound effect on

urine composition. These compositional changes are present in the spectral fingerprints, and

they can be resolved by multivariate statistical models in RametrixTM [29,35].

Others have recognized the value of using Raman spectroscopy for studying urinary tract

disease, including BCA. DeJong and coworkers [36] were able to distinguish a unique Raman

signature associated with BCA cells in surgical (excisional) biopsy touch preparations. Bird

and co-workers [37] used IR Raman microscopy for detection of BCA in cytology prepara-

tions. Canetta and co-workers [38] used modulated Raman spectroscopy to differentiate

unique Raman spectral signatures in preparations of urothelial and bladder cancer cells

derived from tissue cultures. Shapiro and co-workers [39] used Raman micro-spectroscopy to

evaluate bladder cancer lesions and found a unique spectral band at wavelength 1,584 cm-1

that distinguished tumor vs. non-tumor tissue and low-grade vs. high-grade BCA. Kerr and

co-workers [40] used Raman micro-spectroscopy to differentiate bladder cancer cells from

other urine sediments. Yang et al. [41] created a surface enhanced Raman scattering (SERS)

assay for specific receptors on cancer cells. The signal amplification properties of SERS allow

these molecules to be illuminated in liquid urine specimens. Further, Raman spectroscopy-

based screens with Fe3O4 functionalized surfaces have been developed for detecting urine crys-

tals, which may go on to form stones [42, 43].

As can be seen, a large percentage of the published literature on the use of Raman spectros-

copy for detection of BCA is centered on the evaluation of cytologic preparations, with a small

fraction focused on evaluation of the urine metabolome. Our RametrixTM technology,

uniquely, relies on discerning molecular changes in liquid urine, making it significantly more

practical and suitable for mass screening of specimens. Here, we report the results of a prelimi-

nary clinical study where Raman spectroscopy was used with the Rametrix™ LITE [29] and
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RametrixTM PRO [44] spectral processing methods to analyze urine specimens from BCA

patients and from patients with other genitourinary diseases. We performed the study to test

the hypothesis that “unique Raman spectral patterns (i.e., molecular fingerprints) are associ-

ated with BCA and can be detected in liquid urine by RametrixTM.” We compared the results

of these Raman spectroscopic analyses with those obtained from Rametrix™ analysis of urine

from healthy volunteers [35], those with end-stage kidney disease (ESKD) [45], and a synthetic

urinalysis analytical standard (SurineTM). We also evaluated RametrixTM as a screen for BCA

by calculating its sensitivity, specificity, positive predictive value (PPV), and negative predic-

tive value (NPV) metrics. These metrics are critical to assessing the potential usefulness of the

screening test [46], as high sensitivity (true-positive screen result) leads to a higher percentage

of BCA cases being identified, and high specificity (true-negative screen result) minimizes

false-positive screen results that can lead to unnecessary (and invasive) tests and examinations

[47].

Materials and methods

Ethics statement

This study was approved by Virginia Commonwealth University IRB #HM20006879; Virginia

Tech IRB #VT-IRB 15–703; and Frenova research agreement RPP/177151.2 (Fresenius Renal

Research; 920 Winter Street, Waltham, MA 02451). Informed written consent was obtained

for collection of urine specimens from all subjects in this study. Specimens were collected

from (i) patients and volunteers presenting at a urology clinic at a large tertiary-care medical

center, between September 2016 and April 2017; (ii) healthy volunteers affiliated with Virginia

Tech; and (iii) patients undergoing peritoneal dialysis therapies for ESKD. At the time of col-

lection, specimens were de-identified and assigned a code.

Urine specimen preparation

Urine specimens were collected following IRB approval and obtaining patient written consent;

specifics are provided below for each group of patients. Specimens were stored at -35˚C for no

more than four weeks prior to analysis; such conditions preserve the veracity of the Raman sig-

nature (see below Specimen Stability Validation). Stored specimens were thawed for approxi-

mately 25 minutes in an incubator at 37˚C in preparation for analysis. A total of 1.5 mL of

each urine specimen was then aliquoted into glass vials, which were then sealed. Specimens

exhibiting precipitates were vortexed briefly to re-suspend and dissolve these prior to Raman

scanning. SurineTM (Dyna-Tek Industries, Lenexa, KS), a synthetic analytical standard, was

used as the urinalysis control and was also prepared in a similar manner.

Raman spectroscopy

Urine specimens were analyzed as bulk liquids using a PeakSeekerTM dispersive Raman spec-

trometer (Agiltron; Woburn, MA). Specimens were each scanned 10 times using 785 nm 100

mW laser intensity, with 15 second exposure time and a 15 second delay between each scan.

Specimens were scanned in a random order, and SurineTM was scanned with each batch of

urine specimens analyzed.

Urology clinic patients dataset

Urine specimens were obtained from 56 subjects (patients and volunteers) presenting at a

urology clinic, as described above. The sample size of this study was determined by the collec-

tion period duration. The characteristics of the study population are presented in Table 1.
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Mid-stream free-catch urine specimens were acquired in sterile sample cups from the study

subjects. Specimen integrity was preserved prior to Raman scanning using methods described

above. Patient diagnosis was noted during collection so that results could be correlated with

analytical data.

A definitive diagnosis for each patient presenting with clinical signs indicative of BCA was

made using a combination of patient history, standard clinical pathology laboratory studies,

imaging, direct visualization (cystoscopy) and a confirmatory biopsy. The definitive diagnosis

was used to classify urine specimens for subsequent RametrixTM analysis. Clinical diagnoses

for other patients were made using a combination of patient history, standard clinical pathol-

ogy laboratory studies, imaging, direct visualization (cystoscopy) and confirmatory biopsy, as

needed. The definitive diagnosis is referred to as the “Gold Standard” test when describing

metrics to evaluate RametrixTM as a screening test. These metrics are defined later.

Healthy volunteers dataset

For the study reference population, a subset of a previously published dataset [35] of consented

healthy female and male volunteers, ranging in age from 19–69 years old (median age 22 years

old) was used (Table 1). The state of “healthy” was defined as free of infectious or degenerative

disease at the time of sample collection, and with no history/evidence of renal disease (based

on laboratory measurements). Samples from healthy volunteers were handled in an identical

manner to those described above.

Nephrology clinic patient dataset

In previous research [45], urine specimens were collected from patients undergoing peritoneal

dialysis therapies for ESKD. A subset of this larger patient database was used for this study

(Table 1), and the data derived from many of these specimens have also been used with Rame-

trixTM in other studies [29,44].

Specimen stability validation

In unpublished research [48], the effects of storage conditions on urine specimens and Suri-

neTM molecular composition were studied in detail. Here, we present a subset of this data to

validate storage at -35˚C for four weeks. SurineTM and two of the urine specimens used in this

study were transferred to glass vials and were analyzed by Raman spectroscopy initially (t = 0),

after an initial freeze/thaw, and then once every seven days for 12 weeks. All vials were thawed

and vortexed briefly before analysis. Data were analyzed by RametrixTM LITE and statistical

models as described below.

Table 1. Characteristics of study populations and categories of genitourinary tract pathology studied.

Dataset Total Number of Specimens Number of Males Number of Females Median Age (Years)

Urology Clinic Patients Dataset 56 35 21 62

BCA patients (active) 17 8 9 70

BCA patients (inactive a/o under treatment) 8 7 1 62

Genitourinary cancer (Renal, prostate) 8 7 1 60.5

Other non-neoplastic genitourinary (GU) disease 16 11 5 59

Urology clinic healthy volunteers 7 2 5 40

Healthy Volunteers Dataset 56 13 43 22

Nephrology Clinic Patients Dataset 56 N/A N/A N/A

https://doi.org/10.1371/journal.pone.0237070.t001
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RametrixTM analysis

Urine sample spectra were processed and analyzed using the RametrixTM LITE v1.1 [29] and

PRO v1.0 [44] Toolboxes and the Statistics and Machine Learning Toolboxes in MATLAB

r2017b (The MathWorks, Inc.; Natick, MA). The RametrixTM LITE Toolbox was used for

spectral processing and for building Principal Component Analysis (PCA) and Discriminant

Analysis of Principal Components (DAPC) models. The RametrixTM PRO Toolbox was used

to test the ability of DAPC models to classify “unknown” urine specimens by leave-one-out

analysis. Statistical analyses including one-way Analysis of Variance (ANOVA) and pairwise

comparisons, using Tukey’s Honestly Significant Difference (HSD), were performed in

MATLAB.

RametrixTM LITE. For the PCA and DAPC model-building process with RametrixTM

LITE, each Raman spectrum was assigned a classification based on the patient diagnosis

(e.g., BCA-positive or BCA-negative). Each Raman spectrum was truncated to 400–1,800

cm-1, followed by baseline correction using the Goldindec algorithm [49] with the parame-

ters:: baseline polynomial order = 3; estimated peak ratio = 0.5; smoothing window size = 5.

All spectra from each urine specimen were then vector normalized and averaged. Next, PCA

was applied with the RametrixTM LITE Toolbox, and a specified number of PCs was used

to create DAPC model(s). The RametrixTM LITE Toolbox also automated calculation of

Raman shift contributions to PCA and DAPC models. In this procedure, the contribution of

each Raman shift to the separation of classification groups (e.g., BCA-positive vs. BCA-nega-

tive) was determined. Those Raman shifts with significantly large contributions were investi-

gated further through the use of Raman spectral libraries. This enabled conversion of

spectral signatures into inferences about the metabolome of BCA-positive urine. Finally,

ANOVA and pairwise comparisons were performed in MATLAB following RametrixTM

LITE calculations.

RametrixTM PRO. The RametrixTM-based urine screen for BCA involves obtaining a

Raman spectrum of urine, processing the spectrum as described above, reducing the spectrum

to its PCs, and using those with the DAPC model to generate a prediction (e.g., BCA-positive

or BCA-negative). To do this, RametrixTM PRO tested DAPC models for their predictive capa-

bilities following their construction with RametrixTM LITE. Specifically, RametrixTM PRO per-

formed a leave-one-out analysis over all models and datasets. This procedure is shown as a

flow-diagram in Fig 1 Leave-one-out analysis is a subset of K-fold analysis [50] and ensures

every urine specimen in the dataset is evaluated as an “unknown” at some point in the routine

(Fig 1). In particular, the leave-one-out analysis removed one spectrum from the dataset (or

spectral library) and treated it as an unknown. PCA and DAPC models were constructed using

the remaining spectra, and the classification of the unknown was predicted by the model (e.g.,

“BCA-positive” or “BCA-negative”). This process was repeated for each spectrum in the data-

set. With correct/incorrect predictions for every spectrum in the dataset, the urine screen eval-

uation metrics were calculated as described below. In addition, this process was repeated for

every study presented in the Results section.

Evaluation metrics. Urine screen accuracy (i.e., adequacy) was calculated as the percent-

age of spectra classifications predicted correctly in the leave-one-out routines. Sensitivity, spec-

ificity, PPV, and NPV evaluation metrics were calculated as described in the literature [46].

Briefly, sensitivity is the true-positive rate (reported as percentage) of the RametrixTM screen.

This is the proportion of BCA cases confirmed via Gold Standard test (i.e., the definitive diag-

nosis described earlier) which also test positive according to the screen. The specificity is the

true-negative rate and is the proportion of negative cases confirmed via Gold Standard which

also test negative by the screening test. The PPV indicates the proportion of positive screening
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tests that then test positive via Gold Standard. The NPV indicates the proportion of negative

screening tests that then test negative via Gold Standard [46].

These metrics (i.e., accuracy, sensitivity, specificity, PPV, and NPV) were compared to their

random chance rates. For example, for the BCA-positive or BCA-negative classification, the

random chance rates of all metrics were all 50%.

DAPC models for high sensitivity and specificity. Different numbers of PCs were used

to construct DAPC models. This frequently impacted model performance and resulted in

different metric values. Thus, results from multiple models are reported for each scenario

tested in this study. In all cases, at least one high-sensitivity and one high-specificity

model are reported with associated values of all other metrics (i.e., accuracy, PPV, and

NPV).

ANOVA and pairwise comparisons. The classification groups (e.g., BCA-positive and

BCA-negative) were also tested for statistically significant differences among their spectra

using ANOVA and pairwise comparisons using Tukey’s HSD procedure of Total Principal

Component Distance (TPD). To do this, each spectrum was reduced from several hundred of

Raman intensity values (one at each wavenumber) into a single numerical value. This was

done by calculating the distance between the top four PCs of each spectrum and a reference

spectrum, as shown in Eq 1. In this research, the spectrum for SurineTM served as the refer-

ence. The TPD calculation has been used in other analyses with RametrixTM, and more details

have been published elsewhere [35]. In Eq 1, Pu,i is the value of the ith PC of urine spectrum u,

and Pref,i is the value of the ith PC of the reference (i.e., SurineTM) spectrum. In contrast to

RametrixTM PRO analysis of DAPC models, RametrixTM LITE and statistical analyses were

Fig 1. Flow diagram of RametrixTM calculations and the leave-one-out routine. RametrixTM LITE comprises steps 1, 3, and 4. RametrixTM PRO comprises steps 2,

5–10.

https://doi.org/10.1371/journal.pone.0237070.g001
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performed without averaging replicate spectra for each urine specimen.

TPD ¼
P4

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPu;i � Pref ;iÞ
2

q

Eq1

Defining the studies and goals

Two preliminary studies were conducted followed by five larger studies involving patient data-

sets described in Table 1. In the first preliminary study, the storage conditions of the urine

specimens and SurineTM were validated. In the second preliminary study, the Raman spectra

were inspected visually to determine if chemometric methods by RametrixTM were needed in

this study. The larger patient studies are listed in Table 2. In Study 1, the 56 urine specimens of

the urology clinic dataset were used. Those (17) with active BCA were classified as “BCA-posi-

tive.” The remaining specimens were classified as “BCA-negative.” This study was designed to

determine if urine from patients with active BCA could be distinguished from urine of patients

(39) from the same urology clinic who did not (classified as “BCA-negative”). In Study 2, the

56 urine specimens from the Healthy Volunteers dataset were added as additional “BCA-nega-

tive” specimens to the dataset described for Study 1. Here, the goal was to determine if adding

urine spectra from healthy volunteers (median age of 22 years) would skew the results obtained

in Study 1 (median age of 62 years). In Study 3, the Nephrology Clinic dataset, composed of

urine from ESKD patients, was added to the “BCA-negative” classification. ESKD is known to

affect urine molecular composition and Raman spectral characteristics [45]. We then cross-

referenced these spectral differences with a Raman band database [30] to identify potential

molecules significantly altered in BCA-positive urine. We refer to this as the “molecular signa-

ture” of BCA based on our RametrixTM urine screen. In Study 4, we sought to determine

whether the urine specimens could be distinguished by clinic type. The goal was to identify

specific urine spectral signatures of patients visiting urology and nephrology clinics, indepen-

dent of patient health status, and whether these signatures can be distinguished from urine of

healthy volunteers. Finally, in Study 5, the Urology Clinic dataset was used, and specimens

were re-classified as “Genitourinary (GU) Cancer,” “Other GU Disease,” and “Healthy.” The

goal was to differentiate among all of these to determine if a disease type could be identified

among urology clinic patients.

Public access

The raw TPD values, statistical analyses, and RametrixTM PRO results are included in the S1

File. The copyrighted raw Raman spectra data of the Urology Clinic dataset used in this study

as well as the RametrixTM LITE and PRO Toolboxes are offered under license agreement

through GitHub. Relevant links are as follows:

Table 2. Definition of studies and urine specimen classifications.

Study Datasets Classifications

Study

1

Urology Clinic Patients + SurineTM BCA-Positive, BCA-Negative, SurineTM

Study

2

Urology Clinic Patients + Healthy Volunteers

+ SurineTM
BCA-Positive, BCA-Negative, SurineTM

Study

3

Urology Clinic Patients + Healthy Volunteers

+ Nephrology Clinic Patients + SurineTM
BCA-Positive, BCA-Negative, SurineTM

Study

4

Urology Clinic Patients + Healthy Volunteers

+ Nephrology Clinic Patients + SurineTM
Urology Clinic Patients, Nephrology Clinic

Patients, Healthy Volunteers, SurineTM

Study

5

Urology Clinic Patients + 9 Healthy Volunteers

+ SurineTM
GU Cancer, Other GU Disease, Healthy, SurineTM

https://doi.org/10.1371/journal.pone.0237070.t002
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• Raman spectra files: https://github.com/SengerLab/Raman-Scans/tree/BCA

• RametrixTM LITE: https://github.com/SengerLab/RametrixLITEToolbox

• RametrixTM PRO: https://github.com/SengerLab/RametrixPROToolbox

Results

Stability validation

SurineTM and two urine specimens used in this study were stored in triplicate vials at -35˚C

and analyzed weekly for 12 weeks. The purpose of the study was to justify storage of all urine

specimens used in the study for up to four weeks at -35˚C. Raw Raman spectra files are avail-

able through GitHub (see Methods), and statistical results are given in the S1 File. The spectra

were analyzed, first, with RametrixTM LITE by averaging the 10 Raman scans per analysis for

each vial, and truncating, baselining, and vector normalizing, as described in the Methods sec-

tion. PCA, with respect to storage time, was applied with RametrixTM LITE, followed by calcu-

lation of TPD (Eq 1). Here, the initial time point (time = 0) served as the reference (Pref) in Eq

1, and the TPD values were analyzed by ANOVA and pairwise comparisons. ANOVA results

revealed no statistical significance of storage time (p = 0.29). Pairwise comparisons allowed

each time point to be compared with the initial time point. Here, all p-values were greater than

0.54, and those of the first four weeks of storage were all greater than 0.91. These results coor-

dinate well with our larger study [48], suggesting urine specimens can be stored at -35˚C for at

least four weeks while awaiting analysis.

Identifying BCA through direct comparisons of Raman spectra

Raman spectral data from the Urology Clinic Patients dataset were processed and vector nor-

malized using the RametrixTM LITE Toolbox for MATLAB. Representative spectra are shown

in Fig 2 collected from analysis of urine from patients with a BCA diagnosis, ESKD, non-BCA

GU cancer (e.g., renal and prostate), healthy volunteers and patients, other non-cancer GU dis-

eases, and SurineTM. There are visible differences between each of the spectra, with some, espe-

cially for ESKD, appearing pronounced. Urine spectra obtained from urology clinic patients,

which included BCA-positive, healthy patients, non-BCA GU cancer, and non-cancer GU dis-

eases revealed no large defining spectral characteristics of BCA upon visual inspection, which is

consistent with the current lack of urine biomarkers. This also indicates computational analyses

are needed to detect and quantify differences. Therefore, PCA, DAPC, and multivariate statisti-

cal analyses, including ANOVA and pairwise comparisons, were performed.

With these methods, it was determined whether defining characteristics of BCA existed in

the Raman spectra. The non-BCA GU Cancer, healthy patients, and non-cancer GU diseases

spectra were combined to form a “BCA-negative” classification and were compared against

the BCA-positive spectra. The TPD of each sample, relative to a SurineTM control, was calcu-

lated as described above (Eq 1); the urine specimens from BCA-positive patients were found to

be significantly different from BCA-negative patients in the dataset by both ANOVA and pair-

wise comparisons (p< 0.001). Raw TPD values and statistical analysis results are available in

the S1 File. This prompted further analyses to develop a RametrixTM-based urine screen for

BCA and discover the urine metabolome differences of BCA-positive patients.

Study 1: Identifying active BCA in the urology clinic patients dataset

RametrixTM LITE results. In the initial analysis, differences between urine from BCA-

positive and BCA-negative patients from the Urology Clinic dataset (Table 1) were explored.
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To build a predictive DAPC model, spectra from the Urology Clinic patient dataset were clas-

sified simply as “BCA-positive” (urine from a patient with active BCA) and “BCA-negative”

(urine from a urology clinic patient without active BCA), as shown in Table 2.) PCA and

DAPC analyses were performed with RametrixTM LITE. Plots shown in Fig 3 provide a visual

representation of the statistical similarities/differences represented by clustering. Here, each

data point of Fig 3 represents one Raman spectrum. Each PC represents a direction of varia-

tion among the different spectra, with the first PC being the direction of greatest variation, the

second PC being the direction of next greatest variation, and so forth. A total of n minus 1 PCs

were used, with n being the total number of spectra. The PCA plot (Fig 3A) does not have out-

liers or data points indicative of system errors, but the data do not cluster according by spec-

trum classification. Thus, DAPC was needed to find spectral differences according to

classification and build a model capable of identifying an unknown specimen correctly.

DAPC results (Fig 3B–3D) show specific clustering of the data classes after variance

between groups is factored into the analysis. Unlike PCA, DAPC requires samples to be

grouped prior to analysis and uses that classification information to generate canonicals, with

each canonical representing (e. g., defined as) an axis of variation between the different classes.

The DAPC plots (Fig 3B–3D) show each Raman spectrum condensed into a single data point

on the plot, with the first two (of several) canonicals represented on the x- and y-axes. By

accounting for the variation between dataset classes, DAPC plots tend to show more distinct
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Fig 2. Representative baselined and vector normalized urine spectra. BCA-positive is representative of patients with active BCA. GU Cancer (non-BCA) includes

genitourinary cancers (Renal, prostate). Other GU Disease includes those patients with non-neoplastic diseases.

https://doi.org/10.1371/journal.pone.0237070.g002
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clustering than PCA. Thus, the role of PCA in RametrixTM is to reduce a Raman spectrum

from 1,400 data points (intensity values over the 400–1,800 cm-1 Raman shift) to a smaller

number of PCs that can be used in DAPC. In this case (Fig 3B–3D), the specimens from BCA-

positive patients (red) clustered away from specimens from BCA-negative individuals (blue)

along canonical 1, and clustering improved as more PCs were included in the DAPC model.

Thus, these models were built using the top 10, 22, and 40 of the 552 PCs generated by PCA.

These represented up to 99.6% of the dataset variance. While using a large number of PCs can

lead to effective clustering in DAPC plots (Fig 3D), using too many PCs can result in “over-fit-

ting” the data. This results in poor performance when classifying unknown specimens. This

was evaluated with leave-one-out predictions using RametrixTM PRO.

Evaluating the DAPC model with RametrixTM PRO. The leave-one-out analysis was

carried out using RametrixTM PRO on DAPC models built with up to 40 PCs. The output

includes the evaluation metrics (accuracy, sensitivity, specificity, PPV, and NPV), the number

of PCs used to build the DAPC model, and the percent of dataset variance explained by those

PCs. Results are presented graphically as Fig 4, highlighted metric values are given in Table 3,

and all metric values are given in the S1 File. For the Urology Clinic Patients dataset, models

constructed with a low number (< 20) of PCs exhibited low sensitivity (< 50%) and PPV

(< 60%) metrics but specificity values that approached 90% and NPVs above 75%. As the

number of PCs increased, sensitivity and PPV increased non-linearly while specificity and
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Fig 3. RametrixTM LITE results for BCA-positive and BCA-negative spectra. A) PCA results, B) DAPC results (model built with 10 PCs), C) DAPC results (model

built with 22 PCs), D) DAPC results (model built with 40 PCs).

https://doi.org/10.1371/journal.pone.0237070.g003
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NPV decreased. Between 19 and 23 PCs (region circled on Fig 4 and metric values given in

Table 3), accuracy was maximized at about 80%, but different values of sensitivity, specificity,

PPV, and NPV were observed. This suggests RametrixTM could be operated at high accuracy

but be fine-tuned to favor any one (or multiple) metric(s). For example, the sensitivity range

was 29.4 to 82.4% over the five models highlighted. Specificity showed an inverse relationship,

relative to sensitivity, with the maximum being 97.4%. The model built with 22 PCs showed

the highest accuracy (80.4%) with relatively high values of the other metrics, and all metrics

were above the 50% random chance value.

Studies 2 and 3: Adding spectra from healthy volunteers and ESKD

patients to the dataset

The BCA prediction model was re-built using an expanded dataset containing more BCA-neg-

ative samples. By adding 56 healthy volunteers from the VT dataset [35], pairwise comparisons

of TPD data continued to show significant differences between BCA-positive and BCA-nega-

tive spectra (p< 0.001). DAPC results from models built from this expanded dataset with 26
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Fig 4. RametrixTM PRO results for BCA-positive and BCA-negative spectra. Accuracy, sensitivity, specificity, PPV, and NPV results are given for leave-one-out

analyses. The analysis was repeated for several DAPC models constructed with numbers of PCs. The variance explained refers to the dataset variance explained by the

number of PCs included in the DAPC model.

https://doi.org/10.1371/journal.pone.0237070.g004

Table 3. DAPC model metrics for BCA-positive and BCA-negative spectra of the Urology clinic patients dataset�.

PCs Accuracy Sensitivity Specificity PPV NPV

19 77.7% 29.4% 97.4% 83.3% 76.0%

20 78.6% 47.1% 92.3% 72.7% 80.0%

21 76.8% 58.8% 84.6% 62.5% 82.5%

22 80.4% 82.4% 79.5% 63.6% 91.2%

23 78.6% 76.5% 79.5% 61.9% 88.6%

� The BCA-positive/BCA-negative ratio of the Urology Clinic Patients dataset was approximately 30/70%.

https://doi.org/10.1371/journal.pone.0237070.t003
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and 50 PCs are shown in Fig 5A and 5B. Then, urine spectra from 56 late-stage ESKD patients

(selected randomly from our larger dataset) were added to the dataset to generate the DAPC

plots using 22 and 50 PCs, respectively, in Fig 5C and 5D. Despite having a condition known

to alter their urine Raman spectra [45], the spectra from ESKD patient specimens were clearly

different from spectra of BCA-positive patients and clustered with other BCA-negative indi-

viduals. The spectra were still distinguishable between BCA-positive and BCA-negative by

TPD calculations and pairwise comparisons (p< 0.001).

Highlighted RametrixTM PRO results from analysis of these datasets are given in Table 4,

and all metrics models built with one through fifty (1–50) PCs are given in the S1 File. When

the Healthy Volunteers dataset was added to the Urology Clinic Patients database, the percent-

age of BCA-positive patients dropped from 30% of the total spectra to 15%. This influenced

model metrics, as seen by comparing Tables 3 and 4. Highly specific models were generated

(i.e., specificity reaching 100%), but this came at the expense of sensitivity and PPV. For exam-

ple, the model in Table 4 built with 19 PCs had one of the higher PPV metrics (66.7%) for a

comparatively high value of overall accuracy (86.6%). This means that for every positive

screen, two out of three patients would test positive with Gold Standard testing. In addition,

only 23.5% of positive cases (according to the Gold Standard) would test positive with the
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Fig 5. DAPC model results for BCA-positive and BCA-negative spectra when including healthy volunteers and ESKD patients. A) Urology clinic patients and

healthy volunteers (26 PCs), B) Urology clinic patients and healthy volunteers (50 PCs), C) Urology clinic patients, healthy volunteers, and nephrology clinic patients
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listed.

https://doi.org/10.1371/journal.pone.0237070.g005
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screening test, which is a measure of the screening test sensitivity. In addition, a model was

found with 26 PCs that yielded high accuracy (83.9%), sensitivity (58.8%), and specificity

(88.4%), but the PPV showed that of those testing positive with the screen, only one of two

would test positive by the Gold Standard. This study shows the value of maintaining a rela-

tively balanced dataset between the number of BCA-positive and BCA-negative cases.

Raman molecular signature of BCA

The RametrixTM LITE Toolbox was used to extract the Raman shift contributions to separa-

tion of the BCA-positive and BCA-negative spectra in the study involving all three datasets

(Urology Clinic Patients, Healthy Volunteers, and Nephrology Clinic Patients). The DAPC

model constructed with 30 PCs (Table 4) was used here. Several Raman shift contributions

were observed for each model, and plots of these are given in the S1 File. The major Raman

shift contributions in the top four PCs of PCA and the first four canonicals of DAPC were

defined as those surpassing 0.3% contribution in S1A,S1B Fig in the S1 File. The molecular

assignment of these bands was extracted from a reference Raman band database for biological

molecules [30]. For PCA, these molecular assignments included: phosphatidylinositol (576

cm-1), nucleic acids (721, 827, and 1340 cm-1), protein (particularly collagen) (817, 981, 1065,

1127, and 1340 cm-1), and aromatic amino acids (827 and 1004 cm-1). For DAPC, all of these

molecules were in agreement; although some Raman shifts differed. Additional assignments

for DAPC included: cholesterol and fatty acids (702 and 1297 cm-1), monosaccharides (846

cm-1), glycogen (1048 cm-1), and carotenoids (1417 and 1518 cm-1). These are identified as the

major components of the molecular signature for BCA; although, the direction (increase/

decrease) and levels indicative of disease have not been established. We also note that several

minor, still unidentified, components are present in this molecular signature for BCA (see

S1A, S1B Fig in the S1 File).

Study 4: Detecting differences by clinic type

DAPC models were also constructed to classify specimens as belonging to the broader classifi-

cations “Urology Clinic Patients,” “Healthy Volunteers,” or “Nephrology Clinic Patients.” For

the purposes of this comparison, the healthy controls from the Urology Clinic Patient dataset

were re-classified with the Healthy Volunteers. In this analysis, the Urology Clinic Patients

classification included BCA-positive patients as well as those specified in Table 1. The

Nephrology Clinic Patients were all being treated for ESKD with peritoneal dialysis at the time

of urine specimen collection and analysis. DAPC results for a model built with 28 PCs are

shown in Fig 6 and exhibited separation and clustering of these classes. Pairwise comparisons

of TPD data (contained in the S1 File) showed both the Urology Clinic Patients and the

Table 4. DAPC model metrics for BCA-positive and BCA-negative spectra of Urology clinic patients, healthy volunteers, and nephrology clinic patients.

Datasets� PCs Accuracy Sensitivity Specificity PPV NPV

Urology Clinic Patients + Healthy Volunteers 19 86.6% 23.5% 97.9% 66.7% 87.7%

26 83.9% 58.8% 88.4% 47.6% 92.3%

35 58.0% 88.2% 52.6% 25.0% 96.2%

Urology Clinic Patients + Healthy Volunteers + Nephrology Clinic Patients 19 90.5% 11.8% 99.3% 66.7% 90.9%

22 89.9% 23.5% 97.4% 50.0% 91.9%

30 81.0% 58.8% 83.4% 28.6% 94.7%

� The values for the Urology Clinic Patients only are given in Table 2.

https://doi.org/10.1371/journal.pone.0237070.t004
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Nephrology Clinic Patients were statistically different from the Healthy Volunteers classifica-

tion and SurineTM (p< 0.001), but they were not statistically different from one other

(p = 0.92). It is expected that BCA, ESKD, and other GU pathologies all deviate from SurineTM

in different ways. In addition, it is possible that several of the Urology Clinic Patients may also

have undiagnosed or underlying kidney disease, leading these to be identified as not statisti-

cally different according to TPD data. However, the clustering in Fig 6 suggests DAPC models

may be able to discern among these patient types. Leave-one-out analysis was performed with

RametrixTM PRO for each classification identified above, with the other two categories being

considered negative results. Results of highlighted DAPC models are given in Table 5. Here,

high-sensitivity and high-specificity model results (relative to all results) are given for each

classification type. The full list of leave-one-out and statistical analysis results are included in

the S1 File.
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https://doi.org/10.1371/journal.pone.0237070.g006

Table 5. DAPC model metrics for patient-type classifications.

Clinic Type PCs Accuracy Sensitivity Specificity PPV NPV

Urology Clinic Patients 10 84.5% 61.2% 94.1% 81.1% 85.5%

20 85.7% 59.2% 96.6% 87.9% 85.2%

Nephrology Clinic Patients 15 92.9% 94.6% 92.0% 85.5% 15

28 97.0% 91.1% 100.0% 100.0% 95.7%

Healthy Volunteers 21 90.5% 84.1% 94.3% 89.8% 90.8%

35 88.1% 73.0% 97.1% 93.9% 85.7%

https://doi.org/10.1371/journal.pone.0237070.t005
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Study 5: Detecting other cancer types and GU conditions

The ability of RametrixTM to detect BCA was broadened to detecting GU cancers (e.g., kidney

or prostate) and other conditions identified in the Urology Clinic Patients dataset. It was also

tested to see if differences could be detected between cancerous and non-cancerous GU

pathologies. Towards this aim, we sorted the Urology Clinic Patients dataset into three new

classifications: “GU Cancer,” “Other GU Disease,” and “Healthy.” To balance the relative sam-

ple abundance for each category, nine samples from the Healthy Volunteers dataset were

added to the “Healthy” class of the Urology Clinic Patients dataset. Pairwise comparisons of

TPD data showed GU Cancer spectra were statistically different from all others (i.e., Other GU

Disease, Healthy, and SurineTM) (all p< 0.001). Interestingly, the only classifications with

TPD values not statistically different from one another were Healthy and Other GU Disease

(p = 0.99). This may point to limitations of RametrixTM to detect other forms of disease, or it

may indicate a limitation of the current dataset, perhaps associated with the number of sam-

ples of each type that were analyzed.

Leave-one-out analysis was performed for each class individually. Highlighted leave-one-

out results are given in Table 6, and all results are available in the S1 File. Multiple model

results are given for each classification in Table 6, and these represent relatively high-sensitivity

and high-specificity models for each classification. Model metrics showed to be lower than

those of the other studies, pointing to additional challenges of resolving different pathologies

from specimens represented in the Urology Patients Clinic dataset.

Discussion

The molecular composition of urine from BCA-positive patients differs from that of normal

urine, and this is detectable by Raman spectroscopy and RametrixTM. Additionally, the Raman

spectra of BCA urine was found to also be different from urine of patients with ESKD [35,45]

and other GU conditions. We were able to use Raman data and RametrixTM calculations to

identify spectral characteristics unique to BCA-positive urine and the metabolome of those

specimens. While we were able to make molecular assignments for the dominant spectral dif-

ferences (e.g., collagen, DNA, phosphatidylinositol, and others mentioned in the Results and

S1 File), we note that several more minor contributors exist and likely are significant as well.

Examples of these might include biomarkers such as NMP-22 and bladder tumor associated

antigens present in bladder cancer urine [51]. However, since RametrixTM relies on chemo-

metrics (i.e., extracting information from Raman spectra representing many molecules), indi-

vidual biomarkers do not need to be identified specifically in a specimen to build an effective

urine screen for BCA. The analysis specifically detects broad metabolomic signatures of dis-

ease. Thus, it is a combination of many molecular factors (some unknown at this point) that

cause BCA-positive urine to be distinctly different. Nonetheless, we have begun the process of

relating these spectral differences to specific metabolites and patterns using Raman spectral

Table 6. DAPC model metrics for detecting GU pathologies.

GU Pathology PCs Accuracy Sensitivity Specificity PPV NPV

GU Cancer 30 66.15% 56.00% 72.50% 56.00% 72.50%

33 58.46% 84.00% 42.50% 47.73% 80.95%

Other GU Disease 19 73.85% 18.75% 91.84% 42.86% 77.59%

23 66.15% 62.50% 67.35% 38.46% 84.62%

Healthy 27 72.31% 45.83% 87.80% 68.75% 73.47%

29 67.69% 66.67% 68.29% 55.17% 77.78%

https://doi.org/10.1371/journal.pone.0237070.t006
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reference libraries, and we hypothesize this may result in a new set of metabolomic biomarkers

(i.e., molecular signature) for BCA. However, more research is needed to validate these initial

spectral findings with more patient samples, use of several analytical standards, and explora-

tion of the minor components contributing to the molecular signature variances. We antici-

pate that no particular molecule, or small subset, will be indicative of BCA alone. It is likely

that the entire molecular signature, analyzed using RametrixTM, will be necessary to relate the

urine metabolome to the presence of BCA. The leave-one-out analysis with RametrixTM PRO

determines how well DAPC models will perform in characterizing new urine specimens. The

results of the RametrixTM model to identify BCA-positive and BCA-negative patients of the

Urology Clinic Dataset (Table 3 with 22 PCs) are used here to further illustrate the concepts of

sensitivity, specificity, PPV, and NPV. Of those in a patient population, all who test BCA-posi-

tive by the Gold Standard (i.e., diagnostic tests and physical exam), 82.4% of these would test

positive with the RametrixTM screening test (sensitivity). In this population, of those who test

negative by the Gold Standard, 79.5% of these people would test negative with the RametrixTM

screen (specificity). Of all who test positive with the RametrixTM screen, 63.6% of these would

test positive with the Gold Standard (PPV). Finally, of all to test negative with the RametrixTM

screen, 91.2% of these would also test negative with the Gold Standard (NPV). We certainly

acknowledge that these values of sensitivity, specificity, PPV, and NPV still fall short of clinical

relevance, and this demands further study. However, given the limited samples size (i.e., 56

specimens in the Urology Clinic patient dataset), we believe this study serves as a valid proof-

of-concept. Since the sensitivity, specificity, PPV, and NPV all exceed the random chance

value (50%) for a BCA-positive or BCA-negative designation, we believe there is justification

for larger clinical studies of BCA patients and those with other GU pathologies, which will

improve these metrics of this proposed urine screen.

We also recognize that the DAPC model architecture can be altered by including different

numbers of PCs, and that better-performing models were chosen in this study based on perfor-

mance. In future studies with larger patient populations, we expect different model architec-

tures to emerge as optimum until a clinically-relevant urine screen is established. Once used

clinically, the model architecture will remain static. In this study, we showed that by tuning the

number of PCs used to build the model, higher sensitivity or specificity of the RametrixTM

screening test could be achieved. High sensitivity would ensure more true-positive BCA cases

are identified and recommended for further Gold Standard (i.e., definitive diagnostic) testing.

Likewise, maximizing PPV may be useful in that those who screen positive have a higher likeli-

hood of also testing positive by the Gold Standard. Given the invasive nature and resources

required for Gold Standard testing for BCA, high PPV is a desirable attribute for the screening

test. This also favors maximizing specificity (i.e., the true-negative rate) to minimize the false-

positive rate. Those falsely identified by the screen as BCA-positive would, of necessity,

undergo Gold Standard testing (which would occur if the RametrixTM screen did not exist)

and be re-classified as BCA-negative with the results of those tests and exams. Extended clini-

cal testing and thorough analysis of the costs/benefits will enable proper tuning of RametrixTM

models and metrics to better align with clinical goals. Of course, the option exists to build mul-

tiple RametrixTM models with each tuned to favor different metrics. Further Gold Standard

testing could be designed in response to which, or how many, of the RametrixTM models

return a BCA-positive result. In addition, further developments could include “At Risk” pre-

dictions in addition to “BCA-positive” and “BCA-negative.” This new “At Risk” classification

would arise from the region(s) of overlap in DAPC plots of our training datasets. These are

apparent in Figs 3, 5 and 6 in this study. Of course, larger clinical trials will be needed for all of

the scenarios discussed above to be considered.
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In addition to these observations, we have noted the predictive power of DAPC models is

influenced by the size of the spectral dataset used to build the model. Including more spectra

generally improves predictive performance, but the number of positive and negative samples

should be kept relatively balanced. Care should also be taken to ensure that even the negative

samples are representative of the setting in which the predictions will be performed. Using

negative samples that include many potentially obfuscating factors (e.g., hematuria and pyuria

associated with infectious cystitis) will reduce estimated sensitivity, but more accurately por-

trays the true predictive power under worst case scenarios. If, however, RametrixTM is used in

combination with other techniques or known patient history, the range of applicable negative

training data could be reduced, resulting in improved screen metrics.

In this study, for example, the Healthy Volunteers dataset was largely composed of healthy

college student volunteers (median age = 22); whereas, the Urology Clinic Patients dataset had

a much higher median age (62 years) and included a significant portion of individuals with

other GU conditions. If one were to design a screening strategy for cancer recurrence, the

youthful healthy individuals may not be a representative source of training data. A recurrence

screen scenario was tested in this study with the BCA-positive spectra compared to patients

with BCA in remission, but predictions did not exceed random chance, largely due to the low

sample size of patients with remission. More patients in these populations are also needed in

extended clinical trials.

With large enough datasets, RametrixTM showed the technology was capable of distinguish-

ing between different kinds of diseases in this study. Not only can it distinguish BCA and

ESKD, but it revealed the capability to distinguish among different GU conditions. However,

these distinctions had lower predictive power, owing largely, again, to the limited population

size and wide variety of conditions aggregated in the category. This was also true of establish-

ing separate screens based on sex in this study, where the low population size was the limiting

factor. In a clinical setting, however, these factors will be important and should be incorpo-

rated into a single urine screen or require the use of separate screens, based on specific patient

identifiers. It will be imperative in extended clinical trials to expand upon these observations

and consider the population size and composition carefully to include conditions that may

influence urine composition.

With sufficiently-sized spectral datasets, RametrixTM provides an attractive method for

BCA screening. More definitive diagnosis always relies on urine cytology and cystoscopy, but

RametrixTM boasts several advantages as a screening method. Urinalysis by RametrixTM is sig-

nificantly less invasive than cystoscopy, does not require a trained pathologist, requires rela-

tively inexpensive equipment and supplies, and results can be obtained remotely by

technicians. We envision RametrixTM also being used for early and routine screening of indi-

viduals at high risk for developing BCA such as heavy smokers [52] or plastics factory workers

[53]. RametrixTM has potential use for screening treated BCA patients for signs of recurrence.

We intend to expand on the results of this study with samples obtained from ongoing clinical

studies.
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