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Sparse Logistic Regression on Functional Data

Motivated from a hemodialysis monitoring study, we pro-
pose a logistic model with a functional predictor, called the
Sparse Functional Logistic Regression (SFLR), where the
corresponding coefficient function is locally sparse, that is, it
is completely zero on some subregions of its domain. The co-
efficient function, together with the intercept parameter, are
estimated through a doubly-penalized likelihood approach
with a B-splines expansion. One penalty is for controlling
the roughness of the coefficient function estimate and the
other penalty, in the form of the L1 norm, enforces the lo-
cal sparsity. A Newton-Raphson procedure is designed for
the optimization of the penalized likelihood. Our simula-
tions show that SFLR is capable of generating a smooth
and reasonably good estimate of the coefficient function on
the non-null region(s) while recognizing the null region(s).
Application of the method to the Raman spectral data gen-
erated from the heomdialysis study pinpoint the wavenum-
ber regions for identifying key chemicals contributing to the
dialysis progress.

Keywords and phrases: Functional logistic regression,
Generalized functional linear model, Local sparsity, Penal-
ized likelihood.

1. INTRODUCTION

In the past decades, functional regression models with
functional predictors have attracted a lot of attention from
researchers ever since the arrival of the seminal monograph
Ramsay and Silverman (1997). Among them, functional re-
gression models with a continuous response have been stud-
ied the most. Some well-known examples are Yao, Müller
and Wang (2005), Cai and Hall (2006), Hall and Horowitz
(2007), Crambes, Kneip and Sarda (2009), and Yuan and
Cai (2010). Such models were later extended to general-
ized functional linear models (GFLMs) where the response
can be discrete such as binary or counts. For example, an
early investigation was presented in James (2002) where
both continuous and discrete responses were entertained.
Müller and Stadtmüller (2005) generalized the functional
principal component analysis (FPCA) approach in Yao,
Müller and Wang (2005) to GFLMs. Their approach was
further extended to the multi-level functional data scenario
by Crainiceanu, Staicu and Di (2009), and GFLMs with
semiparametric single-index interactions in Li, Wang and
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Carroll (2010). Hall and Horowitz (2007) studied the con-
vergence rates for the standard FPCA approach. However,
the FPCA approach has a well-known drawback that the
functional principal components may not be an efficient ba-
sis for representing the coefficient function (Yuan and Cai,
2010) and can often produce functional estimate with ar-
tificial bumps (Ramsay and Silverman, 2005). Therefore,
a roughness penalty approach was adopted in Goldsmith
et al. (2011) and Du and Wang (2014). In particular, Gold-
smith et al. (2011) approximated the functional predictor
by a linear combination of the leading eigenfunctions of the
smoothed covariance function and estimated the coefficient
function through penalized spline regression. In Du and
Wang (2014), the coefficient estimator is the exact finite-
dimensional optimizer of a penalized likelihood and exhibits
the optimal convergence rate for the prediction error. Their
approach was extended by Wang and Zhu (2017) to gener-
alized scalar-on-image regression models with a total varia-
tion penalty enforced on the regression coefficient function
estimator. Besides basis expansion and roughness penalty,
wavelet representation was also considered for GFLMs. For
example, Mousavi and Sørensen (2017) extended the work of
Zhao, Ogden and Reiss (2012) to a multinomial response and
used wavelet representations for predictor functions and the
coefficient function. A common assumption in these exist-
ing GFLMs is that the smooth coefficient function is nonzero
on the entire domain (except for possibly a few zero-crossing
points). However, this restriction may not be appropriate in
some applications where local sparsity of the regression co-
efficient function, that is, the function is zero on a subregion
or several separate subregions of the domain, has practical
meaning and is thus desired.

Our motivating example comes from a hemodialysis mon-
itoring study. Hemodialysis is a major treatment option
for patients with end stage renal diseases. In a hemodial-
ysis treatment session, the dialyzer connected to the pa-
tient pumps out the patient’s blood and directs it into a
chamber containing clean dialysate, a fluid responsible for
removing the wastes from the blood. The cleaned blood is
directed back to the patient’s body while the waste dialysate
is stored for recycle use. In our experiment, samples of waste
dialysate were collected at regularly spaced time points dur-
ing a standard 4-hour hemodiaysis treatment session. Each
sample was divided into 10 portions and each portion was
scanned by a Raman spectroscope to produce a Raman spec-
trum. As an example, Figure 1 shows two groups of Raman
spectra and their mean spectra from waste dialysate samples
collected at two different times of a hemodialysis session.
Since each spectrum carries critical information about the



chemical composition of the corresponding waste dialysate
sample, the monitoring procedure naturally demands a com-
parison of spectra generated at different time points. On one
hand, a two-sample test like the one in Horváth, Kokoszka
and Reeder (2013) can be used to determine whether the
mean spectra at two time points are different or not. On
the other hand, it is also important to find out at which
regions of the wavenumber domain the mean spectra are
different, since the identified range(s) of wavenumbers can
reveal which chemicals in the waste dialysate samples cause
the difference. This can be cast as a sparse functional lo-
gistic regression problem such that the nonzero region(s) of
the regression coefficient function corresponds to the sub-
domain contributing to the mean function difference while
the zero region(s) corresponds to the sub-domain where the
two group mean functions are similar.

Sparse functional regression models have been studied
when the response is a continuous variable. For exam-
ple, James, Wang and Zhu (2009) proposed a method
called ”Functional Linear Regression That’s Interpretable”
(FLiRTI). They divided the domain into a large number
of sub-intervals such that the problem becomes identify
sub-intervals where the coefficient function is zero. Then
they expand the coefficient function into a linear combi-
nation of locally sparse basis functions and thus reduce the
task to a high dimensional variable selection problem for
which they adopted the Dantzig selection procedure. Their
approach can also incorporate zero regions identifications
for the derivatives of the coefficient function. However, the
FLiRTI has some drawbacks (Zhou, Wang and Wang, 2013;
Lin et al., 2017). On one hand, it cannot guarantee con-
secutive zero sub-intervals due to its discretization of the
problem and may result in a coefficient function estimate
that is hard to interpret. On the other hand, the choice
of the number of sub-intervals can be tricky. Precise iden-
tification of zero regions would require a large number of
sub-intervals but too many sub-intervals can lead to over-
parameterization and unstable estimation. To address these
issues, Zhou, Wang and Wang (2013) proposed a two-stage
locally sparse estimator of the coefficient function. They
used the Dantzig selector to obtain initial locations of the
null sub-regions in the first stage and then refined the lo-
cation estimates by a group SCAD approach. This method
overcomes the underestimation of the non-zero coefficients
from the initial Dantzig estimator. Yet the requirement of
selecting several tuning parameters at each stage increases
estimation variability and computational complexity. More
recently, Lin et al. (2017) proposed a smooth and locally
sparse (SLoS) estimator based on a functional extension of
the SCAD penalty which regularizes the L1-norm of the
estimated coefficient function. B-spline basis functions are
employed to facilitate computation due to their compact
support property. The SLoS method locates the null sub-
regions and smoothly estimates the non-zero values of the
coefficient function without over-shrinkage at the same time.
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Figure 1. Raman spectra for waste dialysate samples at two
time points of a hemodialysis session. Left: Individual spectra.

Right: Mean spectra.
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Therefore, apart from reduced variability, the SLoS method
also has better interpretability. Despite the above develop-
ments, as far as we know, there hasn’t been any work on
extending locally sparse estimation to the GFLM setting.

In this work we consider the problem of modeling a bi-
nary outcome against a functional predictor where the re-
gression coefficient function is locally sparse. Inspired by
the SLoS, we introduce a new method called sparse func-
tional logistic regression (SFLR) which applies an L1-norm
penalty on the coefficient function to achieve local sparsity
as well as a roughness penalty to enforce a certain level
of smoothness. We use B-splines to model the coefficient
function and a Newton-Raphson procedure to optimize the
doubly penalized likelihood for obtaining the estimate. The
proposed method produces a smooth estimate of the coeffi-
cient function that recognizes all the null regions. It has the
following distinct features: (1) it is the first GFLM that in-
corporates local sparsity of the coefficient function into the
estimation; (2) the null regions it identifies has important
practical meaning and represent where the two groups are
similar, while the non-null regions can provide key informa-
tion for differentiating the two groups; (3) its computation is
convenient with the Newton-Raphson procedure even with
the complexity of double penalties. We test the SFLR on
simulated data under different settings in terms of the mis-
classification rates, sensitivity, specificity, and prediction er-
rors. Its application to the hemodialysis monitoring study
yield critical regions for researchers to identify key chemi-
cals in the waste dialysate samples.

The rest of the paper is laid out as follows. Section 2 ex-
plains SFLR method, and covers the computational details.
Section 3 and 4 shows the performance of SLR on simu-
lated data and real data. Section 5 summarizes the proposed
method.

2. METHOD

2.1 Model and Objective Function

Suppose that we have independent observations
(yi, xi(t)), i = 1, . . . , N where yi ∈ {0, 1} is the binary
response and xi(t) is a square-integrable function defined
on a compact interval T , which we assume, without loss
of generality, to be [0, T ] for some T > 0. Assume that
yi ∼ Bernoulli(pi) with pi = Prob(yi = 1) following the
functional logistic regression model

(1) log

(
pi

1− pi

)
= α+

∫ T

0

β(t)xi(t)dt,

where α is the intercept and β(t) is a smooth coefficient
function. In particular, we are interested in the case that β(t)
is locally sparse, that is, there exists an unknown subregion
Z of [0, T ] such that β(t) = 0 for all t ∈ Z. Intuitively, Z
represents the region where the predictor process x(t) carries
no information about the binary response y. Therefore, the

identification of Z is of importance parallel to the estimation
of β(·).

The log-likelihood function for model (1) is

(2)

l(β) =

N∑
i=1

(
yi{α+

∫ T

0

β(t)xi(t)dt}

− log[1 + exp{α+

∫ T

0

β(t)xi(t)dt}]
)
.

To estimate the smooth and locally sparse coefficient

function β(t), we need an L1-norm penalty
∫ T
0
|β(t)|dt for

local sparsity control and a roughness penalty on β(t) for
smoothness guarantee. Therefore, our final objective func-
tion is the penalized likelihood

(3) J(β) = −l(β) + γ

∫ T

0

{β(m)(t)}2dt+ λ

∫ T

0

|β(t)|dt,

where γ and λ are positive tuning parameters weighing re-
spectively the smoothness and local sparsity of β. The order
m of derivative in (3) also specifies the order of splines for
modeling β. For example, m = 2 would correspond to cubic
splines. Our estimator of β(t) is defined by

(4)

β̂(t) = arg min
β

{
−

N∑
i=1

(
yi{α+

∫ T

0

β(t)xi(t)dt}

− log[1 + exp{α+

∫ T

0

β(t)xi(t)dt}]
)

+ γ

∫ T

0

{β(m)(t)}2dt+ λ

∫ T

0

|β(t)|dt
}
.

Note that we do not introduce a notation for the estimator of
α here only for the simplicity of presentation. The intercept
α can be naturally incorporated into the estimation of β
once β is expressed as a linear combination of spline basis
functions.

2.2 Computation

We shall optimize the objective function in (4) through
the Newton-Raphson procedure. This involves first rewrit-
ing the objective function in a matrix-vector format after
approximating the coefficient by a B-spline basis expansion,
deriving a local quadratic approximation to the L1-norm
sparsity penalty, and deriving the updating equation for the
Newton-Raphson procedure.

We represent the coefficient function β(t) by B-splines
defined on [0, T ] as

(5) β(t) ≈
L∑
l=1

blel(t) = eT(t)b,

where e(t) = (e1(t), . . . , eL(t))T is a set of L order-(d+1) B-
spline basis functions, and b = (b1, . . . , bL)T is the coefficient
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vector. Suppose el(t)’s are defined by (M+1) equally spaced
knots, 0 = t0 < t1 < . . . < tM = T . Two consecutive knots
make a sub-interval on which el(t) is a polynomial of degree
d. The compact support property guarantees each B-spline
basis function is nonzero only on at most (d+1) sub-intervals
in succession which form a small sub-region when M is large.
Then the log likelihood (2) is rewritten as

(6)

l(b) =

N∑
i=1

(
yi{α+

∫ T

0

xi(t)e
T(t)dt b)}

− log
[
1 + exp

{
α+

∫ T

0

xi(t)e
T(t)dt b

}])
=

N∑
i=1

[
yi(α+ UT

i b)− log{1 + exp(α+ UT
i b)}

]
,

where U i =
∫ T
0
xi(t)e

T(t)dt, and U = (U1, . . . ,UN )T is
an N by L matrix. The roughness penalty in (4) can be
rewritten as

(7) γ

∫ T

0

{β(m)(t)}2dt = γbTV b,

where V is an L by L matrix with vij =∫ T
0

(d
mei(t)
dtm

dmej(t)
dtm )dt for 1 ≤ i, j ≤ L.

Next, we need to derive a local quadratic approximation
to the sparsity penalty. Let pλ(|β(t)|) = λ|β(t)|. By Theorem
1 in Lin et al. (2017), the sparsity penalty in (4) can be
expressed as

(8)

∫ T

0

pλ(|β(t)|)dt =
T

M

M∑
j=1

pλ

(
‖β[j]‖2√
T/M

)

where ‖β[j]‖2 =
√∫ tj

tj−1
β2(t)dt. The Taylor expansion at

the current estimate β̃ gives
(9)

M∑
j=1

pλ

(
‖β[j]‖2√
T/M

)
≈ 1

2

M∑
j=1

p′λ

(
‖β̃[j]‖2√
T/M

)
‖β̃[j]‖2√
T/M

‖β[j]‖22
T/M

+G(β̃)

=
λ

2
√
T/M

M∑
j=1

1

‖β̃[j]‖2
‖β[j]‖22 +G(β̃),

where G(β̃) does not depend on β(t). Note that
(10)

‖β[j]‖22 =

∫ tj

tj−1

β2(t)dt = bT
∫ tj

tj−1

e(t)eT(t)dtb = bTW jb,

where W j =
∫ tj
tj−1

e(t)eT(t)dt is an L by L matrix with

wuv =
∫ tj
tj−1

eu(t)ev(t)dt for j ≤ u, v ≤ j+d and 0 otherwise.

Plugging (10) in (9) gives

M∑
j=1

pλ

(
‖β[j]‖2√
T/M

)
=

λ

2
√
T/M

bT

 M∑
j=1

1

‖β̃[j]‖2
Wj

b +G(β̃)

=
λ

2
√
T/M

bTW̃b +G(β̃),

where W̃ =
∑M
j=1 ‖β̃[j]‖

−1
2 W j . Therefore,

(11) λ

∫ T

0

|β(t)|dt ≈
λ
√
T/M

2
bTW̃b +

λ
√
T/M

2
G(β̃)

Combining (6), (7), and (11), the objective function in
(4), after dropping the terms not dependent on b, becomes
(12)

J(b) = −
N∑
i=1

[
yi(α+ UT

i b)− log{1 + exp(α+ UT
i b)}

]
+ bTV∗b + bTW̃∗b,

where W̃
∗

=
λ
√
T/M

2 W̃ , and V ∗ = γV . Derivatives of J
are
(13)

∂J(b)

∂b
= −

N∑
i=1

U i[yi − P (U i; b, α)] + V ∗b + W̃
∗
b

= −UT(y − c) + V ∗b + W̃
∗
b,

∂2J(b)

∂b∂bT
=

N∑
i=1

U iU
T
i P (U i; b, α)[1− P (U i; b, α)] + V ∗ + W̃

∗

= UTDU + V ∗ + W̃
∗
,

where P (U i; b, α) = exp(α+bTUi)
1+exp(α+bTUi)

, y = (y1, . . . , yN )T, c =

(P (U1; b, α), . . . , P (UN ; b, α))T, and D = diag(di,i), 1 ≤
i ≤ N , with di,i = P (U i; b, α)(1− P (U i; b, α)).

Therefore, the Newton-Raphson updating step is

(14)

b(new) = b(old) −
(
∂2J(β)

∂b∂bT

)−1
∂J(β)

∂b

= b(old) + (UTDU + V ∗ + W̃
∗
)−1

[UT(y − c)− V ∗b(old) − W̃
∗
b(old)],

where D and c are calculated based on b(old), V ∗ and W j

are calculated based on the B-spline basis functions before

iterations, and W̃
∗

is updated in each iteration.
The complete algorithm consists of the following steps.

• Step 1: Obtain an initial estimate b̂
(0)

through the opti-
mization of (3) with the sparsity penalty removed. This
corresponds to a penalized B-spline estimate of β.

• Step 2: During each iteration, update b̂ through formula

(14) and then update W̃
∗
.
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• Step 3: Repeat step 2 until convergence. Entries in b̂
that are smaller than a threshold ε are set to 0.

• Step 4: The output b̂ is then used to compute the the
estimate of coefficient function by β̂(t) = eT(t)b̂.

To prevent numerical instability due to the probabilities
P (Ui;b, α) close to 0 or 1, we also set a threshold δ in
Step 2 such that any probabilities falling below δ are set
to δ and any probabilities going beyond 1 − δ are set to
1 − δ. In this paper, we use the thresholds δ = 10−5 and
ε = 10−4. For the B-splines, we use the cubic splines and
around 30 basis functions with equally-spaced knots unless
otherwise specified. The tuning parameters λ and γ can be
selected through cross-validation (CV), the Bayesian infor-
mation criterion (BIC), or the Akaike information criterion
(AIC).

3. SIMULATION STUDIES

We consider two kinds of predictor functions Xi(t) in our
simulation studies. In the first setting they were generated
from common functions. In the other setting they were gen-
erated from functions resembling Raman spectra.BIC is used
to select tuning parameters.

3.1 Simulation Setting 1: Common
Functions as Observed Data

In this section, the proposed SFLR method is tested with
different types of coefficient function β(t) and sample sizes.
We considered two types of β(t). The first type, shown in
(15), contains one zero region. The second type, shown in
(16), contains three zero regions. True functions of both
types are plotted as solid black lines in Figure 2.
(15)

β(t) =

 15(1− t) sin(2π(t+ 0.2)), if 0 ≤ t ≤ 0.3,
0, if 0.3 < t < 0.7,
15t sin(2π(t− 0.2)), if 0.7 ≤ t ≤ 1.

(16)

β(t) =


0, if 0 ≤ t < 0.05,
180(t− 0.5) sin(4π(t+ 0.7)), if 0.05 ≤ t ≤ 0.3,
0, if 0.3 < t < 0.7,
45t sin(4π(t+ 0.3)), if 0.7 ≤ t ≤ 0.95,
0, if 0.95 < t ≤ 1.

We used model (1) with α = 0 to simulate the data.
The standard normal distribution was used to generate the
coefficient matrix Bx for B-spline basis functions. Then
the covariate functions X(t) were obtained through X(t) =
Bxe(t), where e(t) is a set of 74 order-5 B-spline basis func-
tions with 71 equally spaced knots. The responses were gen-
erated from the functional logistic regression model (1) with
α = 0. Through these steps we generated a training dataset
and an independent test dataset. The sample size of the
test dataset was kept at 1000 while the training dataset had
sample sizes of 50, 150, 450 or 1000.

Sample size MCR Sensitivity Specificity FDR ISE0 ISE1 PMSE

n=50 0.2805 0.7167 0.7175 0.2833 0.2880 180.4400 3.0490

n=150 0.2420 0.7572 0.7523 0.2428 0.4255 57.9419 2.8513

n=450 0.2375 0.7670 0.7621 0.2330 1.4860 20.3394 2.7394

n=1000 0.2360 0.7645 0.7636 0.2355 0.6008 9.5085 2.7024

Table 1. Performance for simulations in Section 3.1 with
one-null-region β. Numbers are medians of the assessment

criteria.

Sample size MCR Sensitivity Specificity FDR ISE0 ISE1 PMSE

n=50 0.2400 0.7636 0.7639 0.2364 186.7040 605.1388 8.9227

n=150 0.1790 0.8220 0.8212 0.1780 103.6906 424.2930 8.5331

n=450 0.1630 0.8381 0.8378 0.1619 43.4276 144.1832 8.1153

n=1000 0.1610 0.8394 0.8398 0.1606 19.5676 50.1449 8.0885

Table 2. Performance for simulations in Section 3.1 with
three-null-region β. Numbers are medians of the assessment

criteria.

Both estimation and prediction performance were as-
sessed. The prediction performance was evaluated on test
datasets using the misclassification rate (MCR), sensitiv-
ity, specificity, false discovery rate (FDR), and prediction
mean squared errors (PMSE). The PMSE was calculated
from the predicted probabilities for the test dataset as
PMSE = 1

N

∑N
i (pi − p̂i)2. The integrated squared errors

(ISE) was used to measure the estimation quality of β̂(t).
Following Lin et al. (2017), we considered two components

of the ISE: ISE0 = 1
l0

∫
Z(β̂(t)−β(t))2dt defined on the null

region Z, and ISE1 = 1
l1

∫
T \Z(β̂(t) − β(t))2dt defined on

the non-null region T \Z, where l0 and l1 are respectively
the total lengths of the null and non-null regions.

For each simulation scenario, we applied the proposed
method to 100 replications and calculated the medians for
each assessment criterion. Tables 1 and 2 respectively sum-
marize the calculated medians of all the criteria for β(t) from
(15) and (16) with sample size at 50, 150, 450 and 1000. In
both scenarios, the performance of the proposed method, in
terms of all the prediction and estimation criteria, clearly
improved as the sample size increased. The prediction per-
formance was satisfactory with both MCR and FDR around
20% and both sensitivity and specificity around 70-80%.
Overall the prediction performance in the second scenario
was slightly better than that in the first scenario. For the
estimation performance, the ISE0 in the first scenario were
all close to 0, indicating accurate identification of the null
region. The ISE0 in the second scenario, however, seemed
to be higher than expected. This might be caused by the
two small null subregions of β(t) on the ends of the domain
where accurate smoothing to zero can be hard due to less
data available there. Plots of two example estimates of β(t)
in Figure 2 provide further evidence for these conclusions.

3.2 Simulation Setting 2: Spectral Data as
Observed Data

We also did a single replicate simulation with predictor
functions selected to mimic the Raman spectra in our appli-
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Figure 2. True β(t) and SFLR estimates of β(t) for
simulations in Section 3.1.

cation. We generated covariate functions Xi(t) from adding
standard normal random errors to two mean spectra ex-
tracted from our real application data. Each mean spectrum
was used for generating 30 covariate functions, and so the
sample size was 60. The true coefficient function β(t) is plot-
ted as the black solid line in Figure 3, which also resembles
the coefficient function estimate from our application (Fig-
ure 4). The intercept α was chosen such that the binary
groups generated from model (1) had roughly equal sizes.
The SFLR estimate of β, as plotted as the red solid line
in Figure 3, clearly did a good job in distinguishing null
regions from non-null-regions while providing a reasonably
good estimate at the non-null-regions.
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Raman Shift (cm−1)

β(
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β(t)
β̂(t)

Figure 3. True β(t) and estimated β̂(t).

4. REAL DATA

Hemodialysis is the most common treatments for patients
with end stage renal diseases. In a hemodialysis treatment
session, typically about 4 hours long, fresh dialysate is used
to remove metabolic waste products from patients’ blood. In
our hemodialysis study, waste dialysate samples (containing
metabolic wastes) were collected at 10 min, 60 min, 120 min,
180 min, and 240 min (the end) of the session. Each sample
was divided into 10 portions and each portion was analyzed
by a Raman spectrometer (Peakseeker Pro 785, Agiltron
Inc., Woburn, MA) to produce a raw spectrum. Therefore,
a total of 50 raw Raman spectra with 10 spectra associated
with each time point were generated for the session.

The two-sample test from Horváth, Kokoszka and Reeder
(2013) was applied to those spectra and found significant
difference in two groups of spectra as shown in the top
panel of Figure 1. Their respective mean spectra are plot-
ted in the bottom panel of Figure 1, where we can see that
the main difference lie in the regions around 900 cm−1 and
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Figure 4. SFLR estimate of β(t) from hemodialysis spectra.

1400 cm−1. After applying the proposed SFLR method on
the two groups of spectra, the estimated β̂(t) is plotted

in Figure 4. β̂(t) is mostly 0 except for the two regions
[774cm−1, 996cm−1] and [1168cm−1, 1523cm−1]. It suggests
that chemicals whose Raman peaks fall within these two
regions have the most significant contribution to differenti-
ating the two groups of waste dialysate spectra. This finding
is consistent with the mean spectral plot in Figure 1.

5. CONCLUSION

Despite a rich literature on generalized functional linear
models, none has considered the case with a locally sparse
coefficient function that is practically meaningful. Motivated
by a biomedical study on hemodialysis monitoring, we pro-
pose a locally sparse functional logistic regression method
by applying an L1-norm local sparsity penalty and a rough-
ness penalty to the coefficient function. The problems boils
down to the optimization of a doubly-penalized likelihood
where local sparsity and smoothness are enforced through
their respective penalties. A Newton-Raphson procedure is
proposed for computation. Our simulation assessment and
application of the proposed SFLR method to hemodialysis
spectra have shown its capability of identifying null region(s)
of the coefficient function and generating a smooth estimate
of the function on the non-null region(s).

Our method only considers functional data with a binary
response. It can be easily modified to the more general case

where the response comes from an exponential family of
distributions. For example, a generalization of the work in
Du and Wang (2014) can be obtained through the addition
of a local sparsity penalty to their penalized likelihood that
involves only a roughness penalty.
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