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Abstract

To contribute to the growing interest in using Raman spectroscopy to analyze

biological samples and provide chemometric analysis, we have developed a

Raman Chemometrics (Rametrix™) Toolbox for use with MATLAB®. The LITE

version of the Rametrix™ Toolbox is free to academic users through GitHub

(https://github.com/SengerLab/RametrixLITEToolbox) and provides a graphi-

cal user interface for application of the following to Raman spectra: baseline

correction with the Goldindec algorithm, vector or specific band normalization,

principal component analysis (PCA), discriminant analysis of principal compo-

nents (DAPC), identification of wavenumber loadings for PCA and DAPC, and

calculation of total canonical distance. Raman spectroscopy and analysis with

the Rametrix™ LITE Toolbox were applied to generate calibration curves,

monitor enzymatic reactions, and track Escherichia coli culture growth. Results

were quantitatively consistent with traditional methods of analysis. Addition-

ally, the ability to distinguish urine specimens from healthy individuals and

from patients receiving treatment for chronic kidney disease through peritoneal

dialysis was demonstrated using PCA and DAPC of Raman spectra, suggesting

future applications to detect or monitor progression of the disease. Overall, the

Rametrix™ LITE Toolbox provides a streamlined application of PCA and DAPC

chemometric techniques, and total canonical distance offers an additional

quantitative measure to interpret Raman spectra of biological samples.
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1 | INTRODUCTION

Raman spectroscopy is now used widely to monitor
diverse biological applications, from contrasting lipids,
nucleic acids, and collagen content of healthy versus
cancer cells[1] to identifying the chemical components of
seeds, nuts, and oils.[2] The strengths of Raman spectros-
copy include short integration time (i.e., on the order of
seconds), nondestructive measurement, simple sample
preparation (i.e., no required dyes or chemical labels),

and highly detailed spectra.[3–6] Its major challenges
include interpretation of the resulting complex biological
spectra, interference by fluorescence and cosmic events,
and some instrument‐to‐instrument variability.[7] Raman
spectra of biological samples are often composed of many
uncharacterized components in low and variable concen-
trations. Organic chemicals often have bands appearing at
multiple wavenumbers, which can overlap with and
enhance the intensity of those from other components.[8]

Interference from fluorescence by analyte or sample
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impurities can impose a large background, and wavenum-
ber bands may drift depending on the instrument and
environment. For these reasons, assigning specific
chemicals or molecular attributes to distinct wavenumber
regions can be cumbersome, and such approaches have
largely been supplemented by chemometric ones.[9–11]

Chemometric approaches for interpreting complex
biological spectra, such as the least squares regression‐
based technique biochemical component analysis[12,13]

and the more generally applicable technique of principal
component analysis (PCA),[9–11,14–16] allow comparative
analysis of preprocessed spectra. PCA can be applied read-
ily to any group of spectra, with or without prior knowl-
edge of sample groups or classifications, and provides a
visual representation of major similarities and differences
among samples through clustering. PCA can be limited in
its application to Raman spectra by its inability to provide
assessment of groups or the relationships among groups
of spectra.

Applying multivariate analysis of variance
(MANOVA) to principal components arising from PCA
is a more recent technique[17] originally used to provide
a faster and more robust alternative to Bayesian clustering
algorithms when analyzing large datasets given by
modern DNA sequencing technologies. Discriminant
analysis of original variables focuses on between‐group
variability while neglecting within‐group variation. Fur-
thermore, the number of variables interpreted by
MANOVA must be less than the number of samples
given. In both Raman spectroscopy and sequencing data,
MANOVA of Raman intensities at different wavenumbers
or allele frequencies would require thousands of samples.
Analyzing instead the principal components of the origi-
nal variables discards any prior correlations and vastly
reduces the number of variables provided to MANOVA
while remaining information rich.

Discriminant analysis of principal components
(DAPC) can be applied to a set of data classified into a
priori groups based on experimental “factors” to provide
a visual interpretation of the relationships among those
groups. DAPC has been used successfully to interpret sea-
sonal influenza hemagglutinin sequencing data, provid-
ing an obvious visual demonstration of a sudden change
in allele frequency between seasons.[17] It also has been
used with Raman spectroscopy to characterize the pheno-
typic responses of Escherichia coli colonies exposed to var-
ious alcohol toxins.[18,19] Unlike PCA alone, DAPC can
interpret and use minor variances among data to arrange
a priori groups into logical patterns, allowing correlation
with independent variables.

When several principal components are used in
DAPC, an equal number of “canonicals” (dimensions of
DAPC) are formed. Dataset clustering in DAPC is often

visualized using a two‐ or three‐dimensional plot, which
is only representative of the first two or three canoni-
cals.[20–22] However, several more canonicals may exist
and contain valuable information related to the separa-
tion of groups in the dataset. To capture all this multidi-
mensional information into a single value for
quantitative analysis, we have developed the concept of
total canonical distance (TCD).[23] The TCD is calculated
using a standard distance formula across all canonical
values between a reference group and an experimental
group. The TCD calculation is shown in Equation 1,
where j is the total number of canonicals generated from
DAPC, Ci is the value of the ith canonical, and the
subscripts ref and exp refer to reference and experimental
groups, respectively.

TCD ¼ ∑
j

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cref ;i−C exp;i
" #2

q
: (1)

The Raman Chemometrics (Rametrix™) LITE Tool-
box (v1.0) for MATLAB® was developed to quickly process
Raman spectra and apply PCA, DAPC, and TCD calcula-
tions and visualize data clustering. The Rametrix™ LITE
Toolbox is freely available to academic users through
GitHub and provides an easy and graphical implementa-
tion of (a) spectral viewing/comparison and trimming,
(b) baseline correction using the Goldindec algorithm,[24]

(c) vector normalization or normalization to a specific
band intensity, (d) PCA, (e) DAPC, and (f) TCD for
Raman spectral data. Here, we demonstrate that applica-
tion of these tools to Raman spectra from biological sys-
tems allows both qualitative and quantitative analyses of
system dynamics, comparable with traditional methods
of analysis, such as UV/vis spectroscopy and enzymatic
assays. In particular, we conducted the following experi-
ments, arranged in order of increasing complexity, to
demonstrate the methodology: (a) the construction of a
calibration curve for 2‐nitrophenol, (b) determination of
glucose concentrations by enzymatic assay, (c) the con-
struction of a calibration curve for bovine serum albumin
(BSA) through monitoring a Bradford assay reaction, and
(d) periodic monitoring of E. coli culture growth. Finally,
we applied the Rametrix™ LITE Toolbox to Raman spec-
tra of urine specimens from healthy individuals and
patients being treated with peritoneal dialysis for chronic
kidney disease (CKD). Analysis of urine samples by
Raman and spectral processing with the Rametrix™ LITE
Toolbox allowed a fast, noninvasive analysis that revealed
critical molecular differences in the urine composition of
healthy individuals and CKD patients. These studies
demonstrate the wide variety of uses for Raman spectros-
copy and chemometric analysis using the Rametrix™
LITE Toolbox.
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2 | MATERIALS AND METHODS

2.1 | Rametrix™ LITE Toolbox modules
and statistical methods

The Rametrix™ LITE Toolbox (v1.0) for MATLAB® is
freely available for academic users and can be obtained
from GitHub at the following address: https://github.
com/SengerLab/RametrixLITEToolbox. The Rametrix™
LITE Toolbox provides user‐friendly graphical user inter-
face modules (arranged in tabular format) to conduct
computational processing and statistical methods. It is
also capable of generating and exporting MATLAB® com-
patible figures at each step of the analysis described
below.

2.1.1 | Start module: Loading and
exporting data

The Rametrix™ LITE Toolbox accepts raw spectra stored
in SPC spectral file format (*.spc), space‐delimited text file
format (*.txt), or comma‐separated value format (*.csv).
These file formats accommodate one scan per file and
include wavenumber data (Column 1) and Raman signal
intensity data (Column 2). The Rametrix™ LITE Toolbox
will load all spectral files stored in a folder specified by the
user. The Rametrix™ LITE Toolbox can also save loaded
data as a Microsoft Excel® formatted worksheet in a
Windows® operating system or in comma‐separated
values format. Finally, the user can elect to save and load
data in Raman data analysis format (*.rda). This format
retains all data as well as all user‐specified parameters.
The Rametrix™ LITE Toolbox also allows the user to
identify “factors” associated with each spectrum. Factors
can be related to type of treatment, date of scan, and so
forth and can be used as the basis for grouping spectra
in later analyses (e.g., PCA or DAPC). Factors are identi-
fied in the filename of each spectral file and are separated
by an underscore (“_”) in the filename. An unlimited
number of factors are possible, but each file being loaded
into the Rametrix™ LITE Toolbox must have the same
number of factors specified.

2.1.2 | Explore module: Preprocessing
spectra

The Explore module of the Rametrix™ LITE Toolbox is
used for viewing (and overlaying) Raman spectra as well
as performing the preprocessing steps of baselining and
normalization. The user can select one or multiple spectra
and view raw, raw accompanied by baseline, baselined, or
normalized spectra in the viewing pane. The user can also
specify if one or multiple spectra should be excluded from
further analysis due to the presence of cosmic spikes or
excessive noise. The user has the option of truncating
spectra to any desired wavenumber range and applying
baselining using the Goldindec algorithm, selected for its
tolerance of high peaks and high peak ratios.[24] The base-
line polynomial order, the estimated peak ratio, and the
smoothing window size can be specified as parameters
for the Goldindec algorithm. Spectral normalization can
be performed relative to a specified Raman band (chosen
wavenumber) or by vector normalization according to
Equation 2, where y is the Raman intensity at each wave-
number in the truncated range, p is the range of
wavenumbers in each spectrum, and y′ is the vector
normalized intensity at each wavenumber in the
truncated range.

y′ ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑p

j¼1y
2
j

q : (2)

For the implementation examples presented, all
collected raw Raman spectra were truncated to the biolog-
ical fingerprint range[7] of 600–1,800 cm−1. The spectra
were baselined by correcting for fluorescence and back-
ground drift with a smoothing window size of 5. The poly-
nomial order and peak ratio were adjusted for each
experiment and are recorded in Table 1.

2.1.3 | PCA module

The PCA module allows the user to perform PCA on the
dataset, generating one less principal component than
the number of spectra provided, and view principal

TABLE 1 Goldindec algorithm parameters and input parameters for DAPC in each experiment

Experiment Baseline polynomial order Estimated peak ratio Dataset variability explained by PCs

2‐Nitrophenol calibration curve 5 0.35 93.9%

Glucose assay 6 0.4 99.2%

BSA concentration curve 5 0.5 95.4%

Escherichia coli growth 3 0.5 95.2%

Rametrix™ urinalysis 9 0.6 98.1%

Note. DAPC = discriminant analysis of principal components; PC = principal component.
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component scores (spectra plotted along principal compo-
nent axes) in two or three dimensions. The user is also
given the option to assign data labels on the resulting plot,
so outliers can be identified easily. Axes can be adjusted to
correspond to different principal components. PCA is per-
formed in the Rametrix™ LITE Toolbox using the “pca”
function from the Statistics and Machine Learning
Toolbox™ in MATLAB®.

2.1.4 | PC Contributions module: Wave-
number contribution to principal
components

The PC Contributions module allows the user to identify
the total contribution of each principal component to
the total dataset variance as well as the influence of each
wavenumber to that principal component. Results for
several principal components can be visualized simulta-
neously in a viewing pane, and these results can be used
to identify specific Raman bands (that may correspond
with specific molecules) that give rise to variance in the
dataset. Specifically, these results reveal which bands lead
to separations in PCA clustering. These bands can be
linked to individual molecules through the use of spectral
libraries.

In general, principal components are linear combi-
nations of Raman intensities at all wavenumbers of all
spectra loaded in the Explore module. The fractional
contribution, w, of each wavenumber to each principal
component is calculated by Equation 3, where z is the
loading for each wavenumber (as calculated for a
specific principal component by the “pca” function in
MATLAB®) and p is the range of wavenumbers in each
spectrum.

w ¼ z2

∑p
j¼1z

2
j

(3)

This calculation is carried out separately for every
wavenumber and principal component. It provides a
graphical interpretation of how each wavenumber inten-
sity contributes to the variance in the dataset, accounted
for by each principal component.

2.1.5 | DAPC module

The DAPC module allows the user to perform DAPC with
respect to any dataset “factor” specified. The user also has
the option to perform DAPC using either a specified
number of principal components or the required number
of principal components to represent a specified variabil-
ity (% total) of the dataset. The user can view results on
a two‐ or three‐dimensional canonical plot and assign

specific canonicals to axes. The formation of data clusters
on the canonical plot is indicative of similarity (to be
shown in Section 3). The DAPC analysis is performed
using the “manova1” function from the MATLAB® Statis-
tics and Machine Learning Toolbox™ with principal
component scores from the PCA module.

2.1.6 | Canonical Contributions module:
Wavenumber contributions to canonicals

Similar to the PC Contributions module, the Canonical
Contributions module applies Equation 3 to DAPC results
to determine which wavenumbers give rise to separations
seen in the canonical plot(s). Specifically, the fractional
contribution of each principal component to each canon-
ical is calculated (Equation 3) and multiplied by the orig-
inal matrix of wavenumber contributions for principal
components. The resulting matrix contains the fractional
contribution of each wavenumber to each canonical. This
analysis helps determine which wavenumber(s) drive the
cluster separations in DAPC. These wavenumber(s) can
then be attributed to specific molecules though the use
of spectral libraries, such as the following reference for
biological tissues.[25] This module allows the user to check
that the intended molecule(s) are giving rise to cluster
separations in DAPC; otherwise, the chemistry of the
system may be changing in in an unanticipated way.
When the mechanisms involved are unknown, the
Canonical Contributions module can be used to discover
how a system is changing.

2.1.7 | TCD module

TCD is applied in the TCD module of the Rametrix™
LITE Toolbox to further quantify DAPC results. A refer-
ence factor is selected, and the distance across all canoni-
cals used in DAPC is calculated between that reference
and every other factor group. The correlation between
the TCD and independent variable values is then calcu-
lated, as well as a linear least squares equation of a fitted
line through the data.

2.1.8 | Implementation

For the examples presented in this article, the Goldindec
baseline algorithm parameters and the number of princi-
pal components used for DAPC analysis are given in
Table 1. Each application of DAPC was provided with
“factor” labeling of each spectrum based on the experi-
mental design.
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2.2 | Experimental methods

2.2.1 | Instrumentation

All Raman spectra were collected using an Agiltron
(Woburn, MA) PeakSeeker PRO‐785 Raman spectrometer
utilizing a 100‐mW, 785‐nm laser with spot size
0.1–0.2 mm. Spectra spanned the 200‐ to 2,000‐cm−1

wavenumber range with resolution of 8 cm−1. An integra-
tion time of 15 s was used on all samples, which were pre-
pared for Raman measurement in 2‐ml screw thread glass
autosampler vials with 10‐mm screw thread caps (Thermo
Fisher; Waltham, MA).

All spectrophotometric measurements were taken
with a Spectronic Genesis 10 Bio spectrophotometer
(Thermo Fisher). Samples were prepared for spectropho-
tometric measurement in Plastibrand 1.5‐ml disposable
cuvettes 12.5 × 12.5 × 45 mm (Thermo Fisher).

2.2.2 | Calibration curves

2‐Nitrophenol
2‐Nitrophenol (Sigma‐Aldrich; St. Louis, MO) was pre-
pared in deionized (DI) water to final concentrations of
20 mM, 10 mM, 5 mM, 1,000 μM, 500 μM, and 100 μM.
Two 1‐ml samples of the 20‐mM concentration and four
1‐ml samples of all other concentrations were measured
with the spectrophotometer at 420 nm and with the
Raman spectrometer, using DI water used for spectropho-
tometer blank. The 20‐mM concentrations were out of
absorbance range of the spectrophotometer. A dark sub-
tract was performed before each round of Raman mea-
surements to remove noise caused by charge
accumulation on the charge coupled device detector.

Glucose assay
Three samples each of 0, 4, 8, 12, and 16 μl of 1‐mg/ml glu-
cose in 200 μl of 1% benzoic acid standard were mixed with
400 μl of Sigma Glucose (GO) assay reagent (Sigma‐
Aldrich) containing glucose oxidase and peroxidase. The
samples were incubated in a 37 °C water bath for 30 min
before 400 μl of 12 N sulfuric acid was added to each
sample to quench the enzymatic reaction. Samples were
measured by Raman spectroscopy and by the spectropho-
tometer at 340 nm. The 0‐mg/ml samples contained the
assay reagent and were used as the spectrophotometer
blank and a dark subtract before each round of Raman
measurements to remove noise caused by charge accumu-
lation on the charge coupled device detector.

Protein content
Three samples each of 0‐, 50‐, 100‐, 250‐, 500‐, 750‐, and
1,000‐μg/ml purified BSA (New England Biolabs; Ipswich,

MA) were prepared in DI water and measured with
Raman spectroscopy after dark subtract using a DI water
blank. The samples, except for the 50‐μg/ml sample (out
of range concentration), were then evaluated by tradi-
tional Bradford assay[26] using Coomassie Plus™ Protein
Assay Reagent (Thermo Fisher) with spectrophotometric
measurement at 595 nm. The 0‐μg/ml BSA sample served
as the spectrophotometer blank.

Bacterial growth
Chemically competent E. coli 10‐β cells (New England
Biolabs) were grown in 2‐ml lysogeny broth overnight at
37 °C and 200 RPM. Four 2.5‐ml samples were made with
250 μl of the culture and 9.75 ml of fresh lysogeny broth.
A 1‐ml aliquot of each sample was measured with the
Raman spectrometer and on an Eppendorf BioPhotome-
ter plus for OD600 immediately after introduction of fresh
media and every hour thereafter for 5 hr, while incubating
the cultures at 37 °C and 200 RPM in between
measurements.

Rametrix™ urinalysis
Institutional review board‐approved protocols were in
place at Virginia Tech for this study. Urine specimens
were collected from 20 healthy volunteers on the Virginia
Tech campus and 31 patients undergoing peritoneal dial-
ysis treatment for management of CKD from Fresenius
Kidney Care Crystal Springs (Roanoke, VA). Specimens
were frozen and stored at −30 °C for no longer than
4 weeks prior to analysis. Specimens were thawed and
warmed to 37 °C, transferred to glass sample vials, and
scanned by Raman with a 100‐mW 785‐nm laser with a
10‐s integration time. Each sample was scanned 10 times.

3 | RESULTS

3.1 | The Rametrix™ LITE Toolbox

The Rametrix™ LITE Toolbox for MATLAB® was devel-
oped for streamlined applications of Goldindec algorithm
baselining, normalization, PCA, DAPC, and TCD to sets
of Raman spectra. The toolbox is organized into the fol-
lowing seven tabs. (a) Start: loading and saving files, (b)
Explore: exploring and preprocessing spectra, (c) PCA:
performing PCA on spectra, (d) PC Contributions: exam-
ining wavenumber contributions to principal compo-
nents, (e) DAPC: performing DAPC, (f) Canonical
Contributions: examining wavenumber contributions to
canonicals, and (g) TCD: calculating TCD between exper-
imental groups and a reference group. A full examination
of the functionalities provided by the Rametrix™ LITE
Toolbox and recommendations for sample collection and
preprocessing are available in Appendix S1.
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3.2 | Experimental implementations

Modules of the Rametrix™ LITE Toolbox (including PCA,
DAPC, and TCD) were applied to Raman spectra collected
from common wet lab experiments designed to demon-
strate the versatility and applicability of the approach.
Results were compared with traditional methods of anal-
ysis for determining chemical concentration, protein
content, and cellular density in liquid culture. A final
experiment, referred to as Rametrix™ urinalysis, demon-
strates that Raman spectroscopy with analysis by PCA
can be used to detect differences in urine samples from
healthy individuals and patients with CKD.

3.2.1 | 2‐Nitrophenol calibration curve

To demonstrate the applicability of the Rametrix™ LITE
Toolbox in MATLAB®, a simple 2‐nitrophenol calibration
curve was generated using (a) Raman measurements with
PCA, DAPC, and TCD and (b) traditional spectroscopy
using absorbance measurements at 420 nm. Four of the
analysis methodologies included in the Rametrix™ LITE
Toolbox are demonstrated in Figure 1: (a) baselining
and normalization of raw Raman spectra (Figure 1a), (b)

PC wavenumber loadings (Figure 1b), (c) DAPC
(Figure 1c), and TCD (Figure 1d). PCA results were also
generated but are not shown in Figure 1. With PCA, sam-
ples aligned along principal component 1 (PC1) in order
of ascending concentration. The PC1 accounted for
79.2% of the dataset variance, and PC2 accounted for
5.2%. PCA of Raman spectra was able to also incorporate
measurements of 20 mM of 2‐nitrophenol, which was
beyond the scope of the spectrophotometer. To verify that
the largest source of variability in the first principal com-
ponent was the differing concentrations of 2‐nitrophenol,
the wavenumber loadings were evaluated by the PC Con-
tribution module (Figure 1b) and compared with the
expected wavenumber bands for 2‐nitrophenol. The
wavenumbers that contributed most to the first principal
component were 821, 1032, 1142, 1,254 cm−1, and the
1,285‐ to 1,375‐cm−1 range. The 821‐cm−1 band is com-
monly indicative of NO2 in‐plane angle bending, and the
remaining bands indicate CC, CO, and NO stretching,[27]

all of which are characteristic of 2‐nitrophenol structure.
DAPC results (Figure 1c) provide less within‐sample
variability than observed with PCA (not shown) and align
in order of ascending concentration along Canonical 1.
Here, the calibration along Canonical 1 is nonlinear,

(a) (b)

(c) (d)

FIGURE 1 2‐Nitrophenol calibration curves by absorbance and Raman spectroscopy. (a) Averaged Raman spectra, baselined with the
Goldindec algorithm and vector normalized. (b) Wavenumber loadings for the first principal component. (c) Discriminant analysis of
principal components of Raman spectra. (d) Total canonical distance of each factor group plotted against each sample absorbance at 420 nm
[Colour figure can be viewed at wileyonlinelibrary.com]
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and considerable influence of Canonical 2 is observed at
low concentrations. To quantify the sample concentration
differences using DAPC, the TCD was calculated and
plotted against spectrophotometric absorbance data
(Figure 1d). A correlation coefficient (R2) value of 0.94
was calculated (excluding the 20‐mM samples), indicating
high correlation between TCD of Raman spectra
and spectrophotometric absorbance. Data are given in
Table S1.

3.2.2 | Enzymatic assay for glucose

Next, an enzyme‐based commercial glucose assay was
run, and results were obtained by traditional absorbance
measurements at 340 nm and Raman spectroscopy. This
implementation is more complex than the previous exam-
ple because enzymatic reactions were involved to measure
glucose concentrations. The calibration curve based on
absorbance (340 nm) is given in Figure 2a, and an R2

value of 0.97 was obtained between glucose concentration
and absorbance at 340 nm. PCA and DAPC results of the
Raman approach are given in Figure 2c,d. Data clusters
were arranged in ascending order along PC1 and PC2
and Canonical 1. The multivariate analysis technique
employed by DAPC transformed the loosely grouped

PCA scores of the data into linearly arranged cohesive
units, with little variance in Canonical 2 compared with
the overall range of Canonical 1. Application of DAPC
to Raman spectra allows recovery of logical progression
from least to greatest concentration, which is not observ-
able in any single peak location in the complex baselined
and vector normalized Raman spectra shown in Figure 2
d. Calculating the TCD (not shown) between DAPC
groups and correlating with absorbance produced an R2

value of 0.99 (excluding the 0‐μg/ml samples). Data are
given in Table S2.

3.2.3 | Protein concentration

Calibration curves for BSA were obtained (a) by standard
Bradford assays with absorbance measurements at
595 nm and (b) through Raman spectroscopic analysis
and calculation of the TCD. The purpose was to demon-
strate that the Raman methodology can distinguish differ-
ing concentrations of large, chemically complex
molecules (i.e., proteins) as well as it does for small mole-
cules (e.g., 2‐nitrophenol). The calibration curve resulting
from the standard Bradford assay and absorbance mea-
surements at 595 nm is shown in Figure 3a. This analysis
produced an R2 of 0.99 between concentration and

(a) (b)

(c) (d)

FIGURE 2 Glucose assay measured by absorbance and Raman spectroscopy. (a) Averaged glucose absorbances at 340 nm. (b) Averaged
Raman spectra, baselined with Goldindec algorithm and vector normalized. (c) Principal component analysis of Raman spectra. (d)
Discriminant analysis of principal components of Raman spectra [Colour figure can be viewed at wileyonlinelibrary.com]
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absorbance. DAPC results of the Raman spectra taken
before addition of Bradford reagent are shown in
Figure 3b. The wavenumber loadings for the first canoni-
cal are given in Figure 3c and show four prominent bands
around 600, 850, 1,060, and 1,470 cm−1. These are most
likely representative of disulfide bonds, tyrosine, C–N
bonds, and CH2 and CH3 angle bending,

[28,29] all of which
are common features of proteins, including BSA. TCD
results were plotted against average absorbance of
samples treated with Bradford reagent in Figure 3d. This
analysis revealed a correlation R2 value of 0.97 (excluding
the 50‐μg/ml samples). The raw TCD and absorbance data
are given in Table S3.

3.2.4 | Monitoring microbial culture
growth

Another biological application to test the robustness of
the Raman methodology and Rametrix™ LITE Toolbox
was monitoring E. coli liquid culture growth over time
with both OD600 and Raman spectroscopy. A typical
growth curve was observed in the E. coli samples over
the first 5 hr of incubation following inoculation when

measured by OD600 (Figure 4a). PCA of Raman spectra
(Figure 4b) demonstrated that the spectra are extremely
variable and difficult to categorize before applying DAPC
(Figure 4c), whereupon logical progression by time was
observed, decreasing along Canonical 1. A large gap along
Canonical 2 between the first and second hours of growth
may be representative of the shift from lag to exponential
growth phases. TCD results were plotted against OD600 in
Figure 4d, and an R2 value of 0.92 was obtained for the
correlation. The TCD and absorbance values are given in
Table S4. To determine if the growth rate could still be
ascertained by TCD, both TCD and OD600 growth curves
were normalized and used to calculate the growth rate.
These data are also presented in Table S4, and very good
agreement was observed whether OD600 or TCD was used
to calculate growth rate.

3.2.5 | Rametrix™ urinalysis

Raman spectroscopy and processing with the Rametrix™
LITE Toolbox in MATLAB® can replicate the qualitative
analysis returned by a wide range of standard analytical
techniques, but it can also provide qualitative information

(a) (b)

(c) (d)

FIGURE 3 Bradford assay of bovine serum albumin (BSA) measured by absorbance and Raman spectroscopy. (a) Averaged BSA with
Bradford reagent absorbance measurements at 595 nm with standard deviations. (b) Discriminant analysis of principal components of
Raman spectra. (c) Wavenumber loadings of Canonical 1. (d) Total canonical distance of each factor group plotted against each sample
absorbance at 595 nm [Colour figure can be viewed at wileyonlinelibrary.com]
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for complex samples that would otherwise require meta-
bolomics analysis. To demonstrate this capability, urine
specimens from healthy individuals and from CKD
patients undergoing peritoneal dialysis treatments were
analyzed by Raman spectroscopy and the spectra proc-
essed using the Rametrix™ LITE Toolbox. Spectra were
first baselined and normalized (Figure 5a) and then com-
pared by PCA (Figure 5b) and DAPC (Figure 5c). The
separation of healthy individuals and CKD patients is
obvious in PCA (Figure 5b), without the benefit of defined
groups, but this separation became more defined by
DAPC (Figure 5c). Urine represents a particularly
complex matrix, with over 2,500 known chemical compo-
nents,[30] and the Raman spectra are accordingly complex.
The greatest distinguishing sources of variability in the
spectra between the healthy individuals and CKD patients
were identified in the wavenumber loadings of Canonical
1 from DAPC (Figure 5d). The urea band at 1,003 cm−1 is
the major distinguishing feature, but the presence of
many other bands in the wavenumber loadings indicate
that there are many more features from which to extract
patient health data. These have the potential to be previ-
ously unknown biomarkers of disease. Further detailed
analysis could be conducted utilizing factors such as

disease state, age, sample collection time, and other
sample qualifiers to track disease progression and give
valuable insight into overall patient health.

4 | DISCUSSION

To provide a streamlined computational pipeline for
processing Raman spectra and performing multivariate
statistical analyses, such as PCA, DAPC, and TCD, we
have developed and provide the Rametrix™ LITE Toolbox
for MATLAB®, free to academic users. Here, we have dem-
onstrated the use of the Rametrix™ LITE Toolbox and
have shown how it can provide qualitative (i.e., separation
of groups through DAPC) and quantitative analyses (i.e.,
recreating calibration curves with TCD). The quantitative
analysis approach showed good agreement with standard
analytical techniques involving spectrophotometric absor-
bance measurements. Although many of the examples
given in this article are simple in nature, such as generat-
ing calibration and growth curves, the use of TCD to do
this is a new concept. It is valuable because a Raman spec-
trum captures a snapshot of the chemical composition of
a sample, which can then be deconvoluted to reveal

(a) (b)

(c) (d)

FIGURE 4 Escherichia coli liquid culture growth over time measured by OD600 and Raman spectroscopy. (a) Averaged OD600 with standard
deviations. (b) Principal component analysis of Raman spectra. (c) Discriminant analysis of principal components of Raman spectra. (d) Total
canonical distance of each factor group plotted against each sample OD600 [Colour figure can be viewed at wileyonlinelibrary.com]
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further information. For example, here, we have shown
that Raman spectroscopy and calculation of TCD can
generate a reliable growth curve for E. coli. Though
OD600 measurements are easily obtained, additional infor-
mation is contained in the Raman spectra that can
contribute to more robust analysis. We have shown previ-
ously that properties such as membrane fatty acid config-
uration, membrane fluidity, and amino acids content can
be extracted from Raman spectra of E. coli cells growing
under stressed conditions.[18] Additionally, analysis of
E. coli cultures by DAPC can distinguish among the E. coli
phenotypes that arise from exposure to nonlethal doses of
alcohols and different classes of antibiotics.[19,22] Such
changes in cellular phenotype arise from genetically
driven stress responses and are accompanied by changes
in chemical composition (i.e., metabolomics and
lipidomics). With current technologies, the characteriza-
tion of these chemical changes requires cell deconstruc-
tion and several types of analysis, many involving mass
spectrometry. Although we may not yet be able to
deconvolute the complicated Raman signal to decipher
the chemical composition of a complex biological sample,
this signal can be used along with multivariate statistics to

determine the similarities and differences of experimental
groups. The observed differences may then be traced back
to individual Raman bands, which can be identified using
spectral libraries. The Rametrix™ LITE Toolbox enables
this type of analysis through inclusion of the PC Contribu-
tions and Canonical Contributions modules. Although
this was not demonstrated here for the case of E. coli cul-
ture growth, it was demonstrated for the calibration
curves of 2‐nitrophenol and BSA. For the case of E. coli
culture growth, how would one know if observed changes
were due to growth, as opposed to changes in pH or
by‐product accumulation? The PC and Canonical Contri-
bution modules can answer this question. Notably, bands
associated with major biological macromolecules (e.g.,
protein, fatty acids, and nucleic acids) should dominate
the PC and Canonical Contributions modules if observed
changes are due to culture growth. Raman bands for these
molecules can be found in spectral libraries, including this
one.[25] Although results were not shown in detail here, we
confirm this was the case for E. coli culture growth.

Along these lines, the Rametrix™ LITE Toolbox can
be used to discover why (or how) a system changes when
the mechanism(s) are unknown. This was true for the

FIGURE 5 Rametrix™ urinalysis of healthy individuals and dialysis patients. (a) Averaged Raman spectra of different time points per
individual, baselined with the Goldindec algorithm and vector normalized. (b) Principal component analysis of Raman spectra. (c)
Discriminant analysis of principal components of Raman spectra. (d) Wavenumber loadings of Canonical 1 [Colour figure can be viewed at
wileyonlinelibrary.com]
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example of CKD presented here. Nephrologists have
located several useful clinical biomarkers of CKD to
enable early diagnosis. However, it is likely that addi-
tional useful biomarkers exist that could provide addi-
tional information to clinicians. One or more of these
may be responsible for the uncharacterized bands in
Figure 5d. Further investigation into these, through the
use of spectral libraries and/or mass spectrometry, may
yield a novel biomarker. This illustrates one way that
Raman spectroscopy and the Rametrix™ LITE Toolbox
can be used for discovery.

Furthermore, Raman spectroscopy is an immensely
flexible analytical technique that has now become inex-
pensive, reliable, and portable. The past decade has seen
the development of high‐quality handheld Raman
devices, and the instrument used in the research
presented here has the footprint of a laptop computer,
which is in stark contrast to the expensive and cumber-
some Raman instruments that were required of biological
research just a short time ago. Raman spectroscopy also
accommodates near real‐time measurement of diverse
samples collected in many different fields of research,
without the need for extensive training, complex sample
preparation, chemical labeling, or use of hazardous mate-
rials. Thus, the future of Raman‐based analytics in biolog-
ical research is expected to continue to grow, and the
Rametrix™ LITE Toolbox for MATLAB® will provide a
user‐friendly means of processing spectra and performing
multivariate statistical analysis to generate qualitative and
quantitative results. Though almost all the replicated ana-
lytical techniques used here to demonstrate the applica-
tion of Raman spectroscopy and the Rametrix™ LITE
Toolbox were of a biological nature, the methodologies
available in the Rametrix™ LITE Toolbox can be applied
to any source of spectra, or nearly any data that can be
provided in matrix format. We hope that by providing a
centralized toolbox in a widely used mathematics
platform, the use of Raman spectroscopy in evaluation
of complex biological samples will continue to grow. Eval-
uation with PCA and DAPC distills the complex measure-
ment of the chemical spectrum in a sample into visually
digestible scatter plots for analysis, without sacrificing
depth of information, and TCD has proven to provide a
quantitative element to this analysis.

Although the Rametrix™ LITE Toolbox is freely avail-
able to academic users through GitHub, we are also
constructing a Rametrix™ PRO Toolbox version.
Although the capabilities of the LITE version have been
highlighted in this article, the PRO version will be made
available through license agreement and contains addi-
tional functions for sample classification and predictions.
This is useful when dealing with samples of “unknown”
origin or classification.
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