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Abstract
A urine-based screening technique for Lyme disease (LD) was developed in this research. The screen is based on Raman
spectroscopy, iterative smoothing-splines with root error adjustment (ISREA) spectral baselining, and chemometric analysis
using Rametrix software. Raman spectra of urine from 30 patients with positive serologic tests (including the US Centers for
Disease Control [CDC] two-tier standard) for LD were compared against subsets of our database of urine spectra from 235
healthy human volunteers, 362 end-stage kidney disease (ESKD) patients, and 17 patients with active or remissive bladder
cancer (BCA). We found statistical differences (p < 0.001) between urine scans of healthy volunteers and LD-positive patients.
We also found a unique LD molecular signature in urine involving 112 Raman shifts (31 major Raman shifts) with significant
differences from urine of healthy individuals.Wewere able to distinguish the LDmolecular signature as statistically different (p <
0.001) from the molecular signatures of ESKD and BCA. When comparing LD-positive patients against healthy volunteers, the
Rametrix-based urine screen performed with 86.7% for overall accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV), respectively. When considering patients with ESKD and BCA in the LD-negative group,
these values were 88.7% (accuracy), 83.3% (sensitivity), 91.0% (specificity), 80.7% (PPV), and 92.4% (NPV). Additional ad-
vantages to the Raman-based urine screen include that it is rapid (minutes per analysis), is minimally invasive, requires no
chemical labeling, uses a low-profile, off-the-shelf spectrometer, and is inexpensive relative to other available LD tests.
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Introduction

Lyme disease (LD) in North America is caused by infection
with the spirochete, Borrelia burgdorferi sensu lato, a pathogen
transmitted through bites from ixodid ticks.1–4 A second
pathogen, Borrelia mayonii, has also been associated with some
LD cases in North America. Other species of Borrelia are
associated with LD in Europe and Asia.5 Ixodid tick vectors,
capable of transmitting B. burgdorferi and several other dis-
eases, for example, tick-borne relapsing fever (TBRF), Borrelia
miyamotoi or Borrelia hermsii, are present worldwide.6,7 Wildlife
hosts, such as deer and mice, play an important role in disease
transmission. Domesticated animals (horses, cattle, dogs, and
cats) may show serologic reactivity to B. burgdorferi antigens and
may also develop clinical signs of acute and chronic LD, al-
though most infections may be inapparent.8–11 The role of
domesticated animals in supporting/fostering transmission of
LD is unknown.

The pathophysiology, clinical course, and treatment of LD
have been described in many excellent reviews spanning more
than four decades. The interested reader, seeking more in-
formation, will be well served by reading them.2,12–14

The spread of LD from the northeastern United States,
across the north, central, and southeastern United States, and
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into southern Canada, has been a cause of both public health
and economic concern.6,15–20 The costs of diagnosis, treat-
ment, and loss of productivity continue to grow. Hinckley and
co-workers21 estimated that the cost of LD diagnostic testing
alone, using 2008 data from large commercial laboratories,
was more than US$492 million.

The diagnosis of acute LD (3–30 days after tick bite) is
based on clinical evaluation of patients with post-exposure
rash (erythema migrans), headache, moderate to severe
acute-onset arthritis, fatigue, myalgia, and serologic confir-
mation of infection. Not all patients with serologic confir-
mation of infection show any or all of these signs22 and the
severity of clinical signs (if present) is highly variable.

Some physicians, faced with deciding whether or not to
treat a patient for LD solely on the basis of clinical signs, but
without serologic confirmation, opt for treatment with an-
tibiotics.23 Antibiotics are sometimes offered to patients who
seek treatment for chronic fatigue, intermittent or persistent
pain, and/or neurocognitive dysfunction, among other
symptoms; this is controversial (see below). Some patients
believe they may be suffering from “chronic LD”, a clinical
syndrome for which there is no precise definition, diagnostic
test, or definitive immediate response to appropriate anti-
biotic therapy.16,24,25

Recently, Kobayashi et al.26 questioned the wisdom of
widespread prescription of antibiotic therapy. They reported
that more than 70% of patients referred with “LD” to an
academic infectious disease clinic were considered mis-
diagnosed and >80% of those patients were considered to
have received unnecessary antimicrobial therapy. In contrast,
another recent study,27 using data from a patient-derived
database,28 showed that some patients experienced signifi-
cant benefits from a combination of antibiotic and alternative
therapies, and focused medical management.

In 2017, the Centers for Disease Control and Prevention7

reported nearly 43 000 LD cases, based on laboratory confir-
mation or clinical diagnosis by physicians (discussed more fully,
below). Researchers estimate that the number of actual cases is
significantly higher (>300000 per year)21 when extrapolating
from laboratory submissions and clinical reports. This estimate
was based on more than 3.4 million tests for LD infection
performed annually (on approximately 2.4 million specimens),
with positive results from two-tiered serologic testing (see
below), showing infection in approximately 10–18% of patients.

Laboratory confirmation of LD infection is commonly done
with two-stage serology (enzyme immunoassay, followed by
Western immunoblot assay) in which antibody titers against B.
burgdorferi antigens are compared from acute and convales-
cent sera.22,29 This is widely considered the definitive pro-
cedure for LD diagnosis. The accuracy of the recommended
serologic assays is dependent on timely elaboration of anti-
bodies, specifically to the B. burgdorferi pathogen. The de-
velopment of antibodies, however, may take several weeks in
patients with clinical signs, and reliance on serology alone may
delay disease recognition or treatment. In some patients with

a slow or minimal serologic response, those with persistence
of antibodies from distant exposure/past infection, or po-
tential cross-reactivity with other antigens/tick-borne dis-
eases, the confirmation of LD infection through serology
alone may be problematic.5,25,30

Other tests for LD have been developed and used, but the
relevance, accuracy and value of such tests has been questioned
and considered unsupported by objective, robust, and cor-
relative (clinical symptoms/laboratory data) studies.5 Correla-
tions of chronic LD with decreased CD57 lymphocyte levels
have been noted,31,32 but these have also been reconsidered
more recently.33 Advances in serodiagnostic methods, com-
bined with state of the art molecular technologies, hold the
promise of more accurate and timely LD diagnosis.34,35

However, no current test has been widely accepted as a
suitable replacement for the recommended two-stage serologic
assay on acute and convalescent sera.30,36–38

Recently, Pegalajar-Jurado et al.,39 building on both positive
and negative results from previous urinalysis studies,40–42

described detection of urinary metabolites/biomarkers as-
sociated with early LD infection, in specimens of 14 early LD
patients, using liquid chromatography mass spectroscopy (LC-
MS) based methods. Comparing the urine metabolome of 14
patients with infectious mononucleosis and that of 14 healthy
human volunteers, they found dysregulation of multiple
metabolic pathways (including the tryptophan pathway) that
they considered signatory (71–100% accurate, depending on
the pathway and comparison population) for early LD. With
additional studies and verification, these proof-of-concept
studies suggest strongly that a urine-based test for LD is
entirely possible.

It is clear that there is a pressing need, given the increased
incidence of LD, to evolve diagnostic tests that are rapid,
inexpensive, relevant, and potentially noninvasive (most
current methods require blood/serum). Such tests must be
supported by objective evidence of high positive and negative
predictive value, specifically for LD, while excluding myriad
other causes of chronic LD.

Here, we describe the results of a study of urine specimens,
analyzed using Raman spectroscopy and chemometric ana-
lyses, from patients testing positive for LD with a host of
serologic tests. These patients are referred to as “LD-posi-
tive” throughout the description of this study. LD-positive
patient urine spectra (n = 30) were compared with subsets of
our urine spectra database containing 235 spectra of healthy
human volunteers,43 362 patients with end-stage kidney dis-
ease (ESKD),44 and 56 patients with active or remissive
bladder cancer (BCA),45 The analysis was carried-out using
Rametrix methods and software,46,47 and we also explored
the use of iterative smoothing-splines with root error ad-
justment (ISREA)48 for baselining Raman spectral data com-
pared it to the Goldindec algorithm,49 which was used in our
previous studies.

We hypothesized that LD-positive patients would have a
distinctive multimolecular signature in urine that could be
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detected with Raman spectroscopy and chemometric ana-
lyses. Once this hypothesis was proven valid, we then explored
the accuracy, including sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) of the Raman-
based urine screen for the presence of LD. This urine screen
was then applied to the urine spectra of patients displaying LD
symptoms who either had not taken a two-tiered serologic test
or had a negative two-tier serologic test result, even though
some of these patients had exhibited a low CD57 natural killer
cell (NK) count (<60) (not considered by many to indicate LD).

Methods

Patients and Controls

Informed Consent. Informed consent for the collection of urine
specimens (Protocol: VT IRB no. 15-703) was obtained and 15–
30 mL of voided, mid-stream urine was collected in sterile
specimen containers and frozen (�35 °C) until retrieved for
analysis, at which point specimens were warmed to 25 °C and
analyzed (see below)

Patients. Eighty-five patients were seen by two primary care
specialists (JT, AH) for evaluation of chronic fatigue/related
issues, potentially indicative of infection with B. burgdorferi or
exposure to environmental contaminants such as molds. The
patient population consisted of 59 female and 26 male patients.
The age range of female patients was 2–74 years and of male
patients 17–74 years. As would be expected, the clinical
presentation of patients was highly variable, as was the duration
and severity of clinical symptoms. Many patients had pursued
multiple avenues of diagnosis and variable courses and types of
therapies (including antibiotics) prior to evaluation.

Of these patients, 30 tested positive for LD with serologic
tests. Of this group, 14 tested positive with the CDC serologic
test. No patients evaluated had erythema migrans at the time
of presentation. A majority of patients were also evaluated
with other types of testing for LD (not CDC serologic testing)
or to screen for the presence of other disease entities, in-
cluding LD tests from iGeneX, iGene, iSPOT, LabCorp, and/
or Quest. As noted previously (see above), the value and
acceptance of results of these tests is debatable.

Controls: Healthy Volunteers. A full analysis of the healthy
human volunteer urine dataset has been published.43 Briefly,
235 urine specimens were collected from 48 (39 females,
nine males) healthy human volunteers with no history or
evidence of renal disease. Volunteers were also free of in-
fectious or degenerative disease at the time of sample col-
lection. The age range of the healthy volunteer population
was 18–70 years; 87.5% of volunteers were of ages 19–
22 years, and the median age was 21 years. From this dataset,
185 urine spectra were selected randomly and a subset of 30
were used in this study.

Controls: End-stage Kidney Disease Patients. A full analysis of the
ESKD patient urine dataset has been published.44 In total, 362
urine specimens were collected from 96 patients. Patients had
advanced ESKD were undergoing treatment with ambulatory
peritoneal dialysis (PD). Patients ranged in age from 24–
90 years old. The mean age was 60 years, and the median age
was 63.5 years. Multiple urine specimen collections (four to
eight separate collections) were available from multiple pa-
tients, allowing repetitive measurements and correlations
over a protracted course of PD therapy (18 months). From
this dataset, 30 urine spectra were selected randomly and
used in this study.

Controls: Bladder Cancer (BCA) Patients. A full analysis of the
BCA patient urine has also been published.45 In total, 56 urine
specimens (one per patient) were collected. The patients
ranged in age from 31–91 years old. The mean and median age
of 62 years. Of this dataset, 17 specimens were from patients
with active bladder cancer. The median age of this population
was 70 years. In addition, 17 of these specimens were selected
randomly, among the patients with active BCA at time of
collection, and used in this study.

Analytical Standards. Surine urine negative control (Dyna-Tek
Industries, USA) was used as a control standard for urinalysis.

Specimen Collection and Storage

Voided, mid-stream urine specimens were collected and
transferred into sterile specimen cups and then immediately
frozen to �15 °C and then stored at �35 °C until analyzed.

We previously determined the suitability of collection and
storage conditions in a separate study of urine stability45 and
adhered to the guidelines set forth in that study. Unused
portions of urine and spent dialysate specimens were stored
at �35 °C for the duration of the study and re-analyzed, as
needed.

Raman Methodology and Measurements

Previously published experimental methods were used43–45

and are described here. All stored urine specimens were
thawed, equilibrated to room temperature, and transferred to
2 mL screw thread flat bottom borosilicate glass vials (Fisher
Scientific). An Agiltron PeakSeeker Pro-785 dispersive Raman
spectrometer was used with a liquid vial holder (attached via
fiber optic cable) to scan all samples in bulk liquid configu-
ration. All scans were performed at 25 °C using a 785 nm
laser, 30 s excitation time, 30 mW laser power, 0.2 mm laser
spot size, over a 200–2000 cm�1 range, and spectral reso-
lution of 8 cm�1 (manufacturer default). A minimum of 10
scans were collected per vial and averaged. Spectral data were
collected with RSIQ software, and resulting spectral files
contained Raman signal intensity values per 1 cm�1.
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Computational Methodology

Previously published computational methods were also
used.43–47 Spectral processing and analyses were performed
with the Rametrix Lite v1.1,46 Rametrix Pro v.1.0,47 and the
Statistics and Machine Learning Toolboxes with Matlab
r2018A (The MathWorks, Inc., USA). In Rametrix Lite, Raman
spectra were truncated to Raman shifts of 600–1800 cm�1,
baseline corrected using both the Goldindec algorithm49 and
ISREA,48 and vector normalized. For Goldindec baselining, the
following parameters were used: Third-order polynomial,
estimated peak ratio of 0.5, and smoothing window size of five.
Adjustments were made with the ISREA regarding where
nodes were placed in the spectra. These nodes (i.e., also called
“knots”) are used to connect cubic splines for baselining.48

Wavenumber calibration was performed by using the dom-
inant urea Raman shift (adjusted to 1002 cm�1) in urine as a
reference point. Principal component analysis (PCA) and
discriminant analysis of principal components (DAPC) models
were also constructed with the Rametrix Lite Toolbox. The
DAPC models were tested by leave-one-out analysis with the
Rametrix PRO Toolbox, as has been described and
demonstrated.43–45,47 This procedure allowed calculation of
the test accuracy, sensitivity, specificity, PPV, and NPV. These
have also been defined in previous publications,45,50 and here,
the CDC serologic test is treated as the “gold standard” when
comparing to the Rametrix urine screen. The urine screen
accuracy is the percentage of spectra that were assigned to the
correct group when treated as the “unknown” in the leave-
one-out analysis. The sensitivity describes the percentage of
patients that test positive by the gold standard test that then
go on to test positive by the urine screen. The specificity is the
percentage of patients that test negative by the gold standard
test that then go on to test negative by the urine screen. The
positive predictive value (PPV) is the percentage of patients
that screen positive by the urine screen that then go on to test
positive by the gold standard test. Finally, the negative pre-
dictive value (NPV) is the percentage of patients that screen
negative by the urine screen that then go on to test negative by
the gold standard test.

Statistical comparisons of spectra were performed with
one-way analysis of variance (ANOVA) and pairwise com-
parisons using Tukey’s honestly significant difference (HSD)
procedure in Matlab. The following analysis was performed
with un-averaged Raman scans of the entire dataset. Spectra
were truncated to 600–1800 cm�1, baselined with Goldindec
or ISREA, and vector normalized. These spectra were re-
duced to single-value entities by calculation of the total
spectral distance (TSD) and total principal component dis-
tance (TPD) by comparison with the urine analytical standard
Surine. The calculation of TSD and TPD for statistical analyses
has been described in the literature,43–45 and the calculations
are herein described briefly. For the calculation of TSD, the
distance between a patient urine spectrum (e.g., an LD-
positive patient or healthy volunteer) and an analytical

reference standard (i.e., Surine) was calculated at every Raman
shift and summed over all Raman shifts (i.e., 600–1800 cm�1).
For the TPD, the distance between the top five principal
components (PCs) was calculated between a patient urine
spectrum and a reference spectrum. ANOVA and pairwise
comparisons were then performed on these TSD and TPD
calculated values.

Study Targets

We performed multiple analyses to test our hypothesis,
“patients with LD have a distinctive multimolecular signature
in urine that can be detected with Raman spectroscopy and
Rametrix”. In doing so, we asked the following questions:

Are Raman spectra of urine from LD-positive patients
statistically different from urine spectra from healthy
volunteers?

(ii) Are the urine spectra of patients testing LD-positive
with the CDC serological test statistically different
from those of patients who tested positive with a
non-CDC test?

(iii) Are the urine spectra of patients who tested LD-
positive with a serological test different from those
who tested LD-negative but had low CD57 NK
counts (<60)?

(iv) Are the urine spectra of LD-positive patients sta-
tistically different from those who tested LD-
negative?

(v) How would a Rametrix-based urine screen perform
when constructed with urine spectra from LD-
positive patients and healthy volunteers?

(vi) What molecules (i.e., “molecular signature”) distinguish
LD-patient urine from that of healthy volunteers?

(vii) How would a Rametrix-based urine screen perform
when constructed with urine spectra from LD-
positive patients, healthy volunteers, and patients
with ESKD or BCA?

(vi) What percentage of those patients with symptoms
resembling LD and either no serological test history
or an LD-negative serological test would screen
positive with this Rametrix-based urine screen?

Results

Raman Spectra of Individual Patient Groups

A summary of the patients, urine specimens collected and
used, and dataset groupings used in this study are given in
Table I. Raman spectra from all patient groups and the uri-
nalysis standard Surine were processed with the Rametrix Lite
Toolbox v.1.1 for Matlab, as described previously. The urine
spectra were averaged for each group following truncation
(600–1800 cm�1), baselined with Goldindec and ISREA, and
vector normalized. Two sets of nodes were used with ISREA
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in this study and are given in Table II. The processed rep-
resentative spectra are shown in Figure 1 for Goldindec and
ISREA node set number (no.) 1 baselining, and the differences
arising from the different baselining algorithms is clear. Similar
spectra for ISREA node set no. 2 are given in the Supplemental
Material (Figure S1). Also apparent from visual inspection of
representative spectra is that the urine spectrum of LD-
positive patients more closely resembles the spectrum of
healthy human volunteers (with both Goldindec and ISREA)
than the urine spectra of either ESKD or BCA patients. Subtle
differences between the LD-positive representative spectrum
and that of healthy volunteers were observed at 1002 cm�1

(representative of urea), around 900 cm�1, and from 1200–
1400 cm�1 (all commonly associated with tryptophan and
protein, including collagen).51 However, these subtle dif-
ferences were both subjective and insufficient to identity the
presence of LD in urine through simple visual inspection
alone. Thus, Rametrix computational tools were needed to
perform a chemometric analysis of the spectra to discover
defining characteristics (i.e., the “molecular signature”) of LD
in urine.

Statistical Comparisons Among Groups of Urine
Raman Spectra

For the responses to Questions 1–4 below, TSD and TPD
values were generated as described in the Methods section
with the Surine scan as the control. Calculations were per-
formed for spectra baselined with Goldindec, ISREA with

node set no. 1, and ISREA with node set no. 2 separately. TPD
calculations were performed using five PCs. In all cases, one-
way ANOVA of the entire scan dataset was performed,
followed by pairwise comparisons with Tukey’s HSD pro-
cedure. A total of six pair-wise comparison p-values were
calculated for each analysis (i.e., TSD, TPD, with three
baselines each). All p-values of pairwise comparisons are given
in Table S1 (Supplemental Material).

Question 1: Are Raman Spectra of Urine From Lyme
Disease-Positive Patients Statistically Different From
Urine Spectra From Healthy Volunteers?

The groups of urine spectra LD-Positive and Healthy in Table I
were used to answer this question. All pairwise comparisons
from TSD data revealed statistical significance (p < 0.001)
between the groups. Two of three TPD calculations also
showed the same level of statistical significance. Only the TPD
calculation with Goldindec showed less significance (p =
0.055). Given this, the calculations suggest that real molecular
differences may exist between the two groups that can be
elucidated by chemometric analysis.

Table I. A summary of patients, urine specimens, and group assignments used in this study.

Description
Number of urine specimens

collected and used in this study
Assigned group name

in this study
References for urine

specimens

Patients with symptoms resembling LD and no
serologic test results

41 No-test This study

Patients with symptoms resembling LD and a negative
serologic test

13 Neg-test This study

Patients with positive serologic test (CDC, iGeneX,
iGene, iSPOT, LabCorp, and/or Quest)

30 LD-positive This study

Patients with positive CDC serologic testa 14 CDC-LD-positive This study
Patients with positive iGeneX test only 11 Other-LD-positive This study
Patients with positive iGene or iSPOT test only 2 Other-LD-positive This study
Patients with positive LabCorp or Quest test only 3 Other-LD-positive This study
Patients with CD57 NK count only (value <60) and
no other positive testb

11 CD57 This study

Healthy volunteers 30 (of 235 total) Healthy Published43

Patients with ESKD 30 (of 362 total) ESKD Published44

Patients with active BCA 17 BCA Published45

Healthy volunteers, patients with ESKD; patients with
active BCA

77 LD-negative This study

Surine urine analytical standard 1 Surine Published43–45

aPatients testing positive with the CDC serologic test and one or more other tests were grouped using the CDC-LD-Positive dataset.
bOne patient presenting with symptoms resembling LD was found to have a CD57 NK count of 68. This patient was included in the group.

Table II. ISREA nodes used in this study.

ISREA node set Node locations (cm�1)

Node set no. 1 600, 800, 900, 1100, 1200, 1400, 1600, 1800
Node set no. 2 600, 617, 947, 962, 1249, 1378, 1410, 1800
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Question 2: Are the Urine Spectra of Patients Testing
Lyme Disease-Positive With the Centers for Disease
Control Serological Test Statistically Different From
Those of Patients Who Tested Positive With a
Non-Centers for Disease Control Test?

The same procedure was applied to the CDC-LD-Positive and
Other-LD-Positive groups, defined in Table I, to test if there
was any significant difference in the urine spectra of patients
who tested LD-positive by different tests. All pairwise
comparisons suggested no statistically significant differences
exist between these groups (i.e., all p-values > 0.05). It is noted
the TPD data with Goldindec baselining was p = 0.059.
Overall, results from these analyses confirmed that the CDC-
LD-Positive and Other-LD-Positive groups could be grouped
together as LD-Positive and used in further calculations.

Question 3: Are the Urine Spectra of Lyme
Disease-Positive Patients Statistically Different From
Those Who Tested Lyme Disease-Negative?

The procedure was applied to the LD-Positive and Neg-Test
groups of Table I. All pairwise comparisons with TSD data
suggested no statistical differences between these groups (p >
0.05). Of the pairwise comparisons with TPD data, those with
Goldindec and ISREA node set no. 1 suggested statistically
significant differences between the groups (p < 0.001), while
the TPD data with ISREA node set no. 2 returned p = 0.56.
Thus, it was inconclusive whether these groups were dif-
ferent, based on these analyses. This suggests that some urine

specimens of the Neg-Test group could have the LD mo-
lecular signature. Individual specimens were analyzed for this
using our Raman-based screen and chemometric analysis, and
results are reported in a later section.

Question 4: Are the Urine Spectra of Lyme
Disease-Positive Patients Statistically Different From
Those With No Lyme Disease-Positive Test History but
a Low CD57 NK Count (<60)?

Again, the same procedure was applied but using the LD-
Positive and CD57 groups of Table I. Here, two of six pairwise
comparisons returned statistically significance between the
groups (p < 0.05). All three TSD p-values suggested the groups
were not different (p > 0.05), and the ISREA node set no. 2
TPD pairwise calculation (p = 0.69) also suggested the groups
were not significantly different. These analyses also suggests
that some urine specimens of the CD57 group could have the
LD molecular signature. It is noted that several specimens are
contained in both the Neg-Test and CD57 groups, so this is
logical. Again, the individual specimens were analyzed with the
Raman-based screen and chemometric analysis, and results
are given later.

Building a Raman-Based Urine Screen for
Lyme Disease

Question 5: How Would a Rametrix-Based Urine
Screen Perform When Constructed With Urine

Figure 1. Representative baselined and normalized spectra given (a) Goldindec and (b) ISREA baselining with node set no. 1.
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Spectra From Lyme Disease-Positive Patients and
Healthy Volunteers?

First, the differences between the urine spectra of the LD-
Positive group were compared further against those of the
Healthy group. This was done with PCA and DAPC using both
Goldindec and ISREA baselining (Figure 2). For reference, data
point clustering in PCA and DAPC plots indicate spectral (and
molecular) similarities. Distance between clusters arises from
dissimilarities among groups (defined in Table I) of spectra
(e.g., LD-Positive vs Healthy). In addition, PCA is an unsu-
pervised model, meaning only processed Raman spectral data
were used as inputs. No classification data (e.g., LD-Positive or
Healthy) were considered in PCA. DAPC, however, generates
a supervised model, where principal components (PCs) from
PCA and classification data were used in model construction.
DAPC models must be validated with samples not used in
model construction. Here, we used leave-one-out analysis.

The PCA results for Goldindec (Figure 2a) showed some
concentration of LD-Positive and Healthy group spectra, but
complete separation between clusters was not observed. For
a DAPC model built with 29 PCs (Figure 2b) 99.95% of the
dataset variance was represented. This led to separation of the
LD-Positive urine spectra from those of the Healthy group
along the first two canonical axes. By contrast, the unsu-
pervised PCA model built with ISREA node set no. 2 baselined
spectra (Figure 2c) led to improved separation of the LD-
Positive spectra from those of Healthy. DAPC results with five
PCs (Figure 2d) showed slightly worse separation of clusters
compared to the DAPC model with Goldindec (Figure 2b).

Importantly, this analysis, alone, shows that spectral differ-
ences can be found between these two groups of urine spectra
and that a unique LD molecular signature may exist. How well
these models perform in assigning a group (i.e., LD-Positive or
Healthy) to an “unknown” urine specimen is addressed in the
following sections. At this point, it is also unclear, but of
interest, whether those spectra that separate further from the
Healthy cluster represent more “severe” LD-positive cases.
PCA and DAPC results given ISREA node set no. 1 are given as
Figures S2 and S3 (Supplemental Material) In addition, the PCA
data (coefficients, sores, PC loadings) given the three base-
lining procedures are also available in the Supplemental
Material.

Rametrix Pro was applied for leave-one-out analysis of
DAPC models. This was done to assess how well the Raman-
based analysis would serve as a urine screen to detect a unique
spectral signature associated with LD. The details of Rametrix
Pro have been published47 and it has also been used to develop
a urine screen for ESKD44 and BCA.45 In the leave-one-out
analysis, the urine spectrum “left-out” of the model building
process was treated as the “unknown” and then assigned to a
group (i.e., LD-Positive or Healthy) using the model. The
prediction was then compared to its real grouping. This
procedure was repeated for all spectra in the dataset. From
this, overall model accuracy, sensitivity, PPV, and NPV were
calculated.

Several DAPC models were constructed with Goldindec
and ISREA baselining of spectra. Leave-one-out analysis was
performed for each one with Rametrix Pro, and performance
metrics are given in Table III. For Goldindec, the top

Figure 2. Distinguishing between LD-positive patients and healthy volunteers. (a) PCA results for Goldindec baselining, (b) DAPC using 29
PCs with Goldindec baselining, (c) PCA results for ISREA node set no. 2 baselining, and (d) DAPC using 5 PCs with ISREA baselining with
node set no. 2.
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performer (over 88% accuracy) was built with 29 PCs, which
required 99.95% of the dataset variance. A model built using
five PCs (97.9% of the dataset variance) achieved over 73%
accuracy. Likewise, a model built with ISREA node set no. 1
and five PCs (97.7% of dataset variance) achieved almost 72%
accuracy. However, the ISREA node set no. 2 model with five
PCs (98.8% of dataset variance) was able to achieve almost
87% overall accuracy. An assessment of why the ISREA node
set no. 2 performed better than node set no. 1 is left for the
Discussion section.

The following conditions were used in choosing model(s)
to consider in a urine screen for LD. First, all metrics (i.e.,
accuracy, sensitivity, specificity, PPV, and NPV) had to exceed
50%, with preference given to better performers. Second, the
model must be simple (built with few PCs). Models built with
more PCs have the potential for over-fitting the dataset, which
can lead to poorer performances as more unknown samples
are screened. Finally, models that maximized NPV were fa-
vored. This minimizes in the incidents of false-positives, which
can lead to unnecessary invasive or expensive diagnostic tests
and/or treatments.

Elucidating the Molecular Signature of Lyme
Disease in Raman Spectra of
Urine Specimens

Question 6: What Molecules (i.e., Molecular
Signature) Distinguish Lyme Disease Patient Urine
From That of Healthy Volunteers?

The identification of spectral contributions leading to sepa-
rations of clusters in PCA and DAPC can traced to molecular
differences between samples. Here, we determined what
Raman shift intensities were significantly different among the
LD-Positive and Healthy groups of spectra. These differences

that are unique to LD comprise its molecular signature in
urine. The contribution of each Raman shift to the separations
between LD-Positive and Healthy (Figure 2) are given in the
Supplemental Material (PC loadings and Figures S4–S9) for both
Goldindec and ISREA baselined models. The biological mole-
cules associated with these Raman shifts were identified in a
published database.51,52 The full set of results is given in
Supplemental Table S2 in the Supplemental Material, and the
most prominent contributions are shown in Table IV. Results
include contributions from both PCA and DAPC models and a
Significance Score. The Significance Score has a range of 0–6
and is the total number of times a Raman shift was deemed
significant in the models analyzed (PCA and DAPC for the
Goldindec and two ISREA baselined models). Given our
spectral resolution, the average difference between our ob-
served Raman shift and the published values51,52 was about
0.74 cm�1. Both the observed and the published Raman shifts
are given in Table IV and Supplemental Table S2.

A recent metabolomic analysis of urine, using LC-MS for the
detection of LD, highlighted the presence of tryptophan and
tryptophan metabolites, among others, in the urine of LD-
positive patients.39 Tryptophanwas also present as a prominent
contributor in our analysis in Table IV. It was found with a
Significance Score of four or greater at the following Raman
shifts: 622 and 623 cm�1 (aromatics more broadly) (score = 5),
873 cm�1 (score = 5), 877–880 cm�1 (score = 5), and 1622–
1624 (score = 5). Tryptophan was also represented in seven
more Raman shifts in Supplemental Table S2. Other contrib-
utors with a significance score of three or greater included
nucleic acids and DNA/RNA (669, 677–680, 618, 628, 804,
1078, 1262, and 1228–1229 cm�1); lipids and triglycerides
(1072–1074, 1078, 1262, and 1328–1329 cm�1); sugars (845,
846–847, 993–994, and 1025 cm�1); collagen (669, 1328–1329,
and 1635 cm�1); other proteins/peptides (890–892, 979–982,
1243, 1262, 1629, 1633, 1642–1643, 1647–1649, and

Table III. Rametrix PRO results for LD-positive patients and heathy human volunteers using Goldindec and ISREA baselining.

PCs Dataset variance explained by PCs, % Accuracy, % Sensitivity, % Specificity, % PPV, % NPV, %

Golindec baselining
5 97.9 73.3 63.3 83.3 79.2 69.4
10 99.4 63.3 63.3 63.3 63.3 63.3
20 99.9 51.7 63.3 40.0 51.4 52.2
29 99.95 88.3 83.3 93.3 92.6 84.8
30 99.95 83.3 83.3 83.3 83.3 83.3
40 99.98 53.3 26.7 80.0 57.1 52.2

ISREA baselining (node set no. 1)
5 97.7 71.7 60.0 83.3 78.3 67.6
10 99.1 71.7 66.7 76.7 74.1 69.7
20 99.7 63.3 63.3 63.3 63.3 63.3

ISREA baselining (node set no. 2)
5 98.8 86.7 86.7 86.7 86.7 86.7
10 99.6 85.0 76.7 93.3 92.0 80.0
20 99.9 80.0 70.0 90.0 87.5 75.0
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Table IV. Prominent Raman shiftsa leading to differentiation between LD-positive patients and healthy volunteers with a significance score of
three or higher.

Observed Raman
shiftb (cm�1)

Raman shift (cm�1) in
the literaturec

Assignment(s) and
reference(s)c

Goldindec
(29 PCs)

ISREA node set
no. 1 (five PCs)

ISREA node set
no. 2 (five PCs)

Significance
scored (0–6)Present in PCA, DAPC, both?

622, 623 620, 621 Related to aromatics53–55 Both Both — 4
669 667–669 Collagen type I, DNA/

RNA55–57
PCA Both — 3

677–681 678 DNA58 Both Both — 4
683–685 — — PCA Both — 3
804 802 Uracil59 PCA — Both 3
810–812 812 Phosophodiester60 DAPC — Both 3
828 828 DNA/RNA57 DAPC — Both 3
832, 833 831 Tyrosine58 DAPC — Both 3
845–847 847 Mono- and disaccharides61 DAPC — PCA 3
873 873 Hydroxyproline,

tryptophan56
DAPC Both Both 5

877–880 880 Tryptophan61 DAPC Both Both 5
883 883 Protein62 — Both Both 4
890–892 890 Structural protein modes

of tumors63
DAPC — Both 3

906, 907 906 Tyrosine64 DAPC — Both 3
979–982 980 β-sheet protein Both Both PCA 5
993, 994 996 Ribose65 Both PCA Both 5
1002 1002 (experimental

Standard)
Urea (dominant in urine) Both Both Both 6

1005 1005 Phenylalanine, protein,57

carotenoids66
— Both PCA 3

1025 1025 Carbohydrates,65

glycogen67
DAPC — Both 3

1047, 1048 1048 Glycogen68 DAPC Both Both 5
1072–1074 1073 Triglycerides69 DAPC PCA Both 4
1078 1078 Phospholipids,70 nucleic

acids62
DAPC Both Both 5

1262 1263 DNA/RNA, protein,
lipids58,66

— PCA Both 3

1328, 1329 1330 Phospholipids,63,71

DNA,63,72 collagen72
PCA Both — 3

1622–1624 1623 Tryptophan56 PCA Both Both 5
1629 1628 β-form polypeptides73 PCA Both Both 5
1633 1634 Amide I65 — Both Both 4
1635 1635 Collagen65 — Both Both 4
1642, 1643 1645 Amide I55 PCA Both Both 5
1647–1649 1650 Amide I71 — Both Both 4
1653 1653 Carbonyl, amide I74,75 — Both Both 4

aProminent is defined as having a peak intensity above the tolerance lines shown in the Supplemental Material (Supplemental Figures S4–S9): 0.4% for Goldindec
and 0.2% for ISREA.
bThe observed Raman shift values sometimes differed from the published value following Raman shift calibration based on urea (1002 cm�1). The average
deviation was 0.74 cm�1.
cAll references and Raman shifts given in this table were first reported by Movasaghi et al.51.
and Talari et al.52.
dThe significance score is defined as the total number of models in which the Raman shift is prominent. The range is from zero (no occurrences) to six
(prominent in every model).
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1653 cm�1); and urea (1002 cm�1). In addition, of the 112
Raman shifts listed in Supplemental Table S2: 17 (15.2%) were
associatedwith lipids; 28 (25%) were associated with aromatics;
17 (15.2%) were associated with nucleic acids; 16 (14.3%) were
associated with carbohydrates; 10 (8.9%) mention collagen
specifically; three (2.7%) are related to red blood cells; and
three (2.7%) are related to carotenoids. In addition, an ob-
served Raman shift at 683–685 cm�1 was found with a sig-
nificance score of three; however, no molecular association has
yet been found. Taken together, the prominent Raman shifts in
Table IV comprise the majority of our Raman molecular sig-
nature of LD. Other minor contributors (for a total of 112
Raman shifts) are shown in Supplemental Table S2.

Testing the Rametrix-Based Lyme Disease
Urine Screen Against Other Patient Groups

Question 7: If a Molecular Signature for Lyme Disease
is Found, is it Truly Specific for Lyme Disease?

End-stage kidney disease and BCA are two other disease
conditions that significantly impact the molecular composition
of urine. We have shown previously these can both be re-
solved using Raman spectroscopy of urine and similar com-
putational approaches.44,45 Here, we sought to determine
whether urine from LD-positive patients could still be re-
solved when compared against that of ESKD and BCA patients
in addition to healthy volunteers. First, we determined
whether statistical significance existed among the groups
through ANOVA and pairwise comparison calculations with

TSD and TPD values. Results are given in Supplemental Table S3.
With Goldindec baselining and TPD values, all groups were
statistically different (p < 0.05), and eight of 10 comparisons
returned p < 0.001. For ISREA node set no. 1 baselining, all
groups were statistically different (p < 0.001) except for the
Healthy and Surine groups. It is noted again that Surine is a
urinalysis control. Finally, for ISREA node set no. 2 baselining,
all groups were found statistically different with p < 0.001,
except for Healthy and Surine (p = 0.004). Thus, the LD
molecular signature in Raman spectra of urine is statistically
different from those of ESKD and BCA.

Next, PCA and DAPC models were constructed, and the
results of four DAPC models are shown in Figures 3 and 4:
Goldindec baselining with five PCs, Goldindec with 29 PCs,
ISREA node set no. 1 with five PCs, and ISREA node set no. 2
with five PCs. DAPC models revealed significant LD-Positive
and LD-Negative regions along the first canonical axis for all
four models. A layer of overlap also existed, which was
considered “inconclusive” to separate LD-positive and LD-
negative urine spectra. While the boundaries of the incon-
clusive region are debatable, it appeared to be smallest in the
DAPC model built with ISREA node set no. 2 baselining and
five PCs. The analyses were repeated considering LD-Positive,
Healthy, ESKD, and BCA groups independently. The DAPC
results are shown in Figure 4 for all four models.

Next, leave-one-out analysis was applied to determine the
performance of the DAPCmodels for identifying the presence
of LD in an “unknown” urine spectrum, given the expanded
set of LD-negative urine specimens. Results are shown in
Table V. Here, the DAPC model constructed with five PCs

Figure 3. DAPC results for LD-Positive versus LD-Negative (Healthy, ESKD, BCA) for (a) Goldindec baselined data and five PCs to build the
DAPC model, (b) Goldindec baselined data and 29 PCs, (c) ISREA node set no. 1 baselined data and five PCs, and (d) ISREA node set no. 2
data and five PCs.
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and ISREA node set no. 2 baselining performed best, yielding
almost 89% overall accuracy, 80% sensitivity and PPV, and 90%
specificity and NPV. The DAPCmodels built with five PCs and
Goldindec or ISREA node set no. 1 baselining performed
similarly, with overall accuracies of 70 and 65%, respectively.
The DAPCmodel built with 29 PCs and Goldindec baselining
classified few samples as “LD-Positive,” leading to a sensi-
tivity of <10%. This showed stark contrast to the results
shown in Figures 3b and 4b and suggested this model suffered
from overfitting of data. An additional model was con-
structed with 47 PCs, and this issue appeared rectified, as the
overall accuracy approached 80% and sensitivity exceeded
73%. This example demonstrates the potential for model
overfitting as the number of PCs used to build DAPC models
is increased and the dataset variance explained by PCs nears
100%. Finally, we used the models in attempt to identify if an
unknown urine specimen belongs to the Healthy group.
Results are given in Table VI and, again, show a superior
performance by ISREA node set no. 2 baselining, returning
86.6% overall accuracy.

Question 8: What Percentage of Those Patients With
Symptoms Resembling Lyme Disease and Either (i) No
Serological Test History or (ii) An Lyme Disease
Negative Serological Test Would Screen Positive With
the Rametrix-Based Urine Screen?
We applied the Raman-based screens of Table III (LD-
Positive vs Healthy groups; called “simple screen”) and
Table V (LD-Positive versus LD-Negative groups; called
“comprehensive screen”) to the patients of Table I who had
no serological test (No-Test group) and those who had
tested negative previously, but still presented with LD-like
symptoms (Neg-Test group). For simplicity, we only used
ISREA node set no. 2 baselining and DAPC models built with
five PCs for these calculations. The percentage of urine
specimens that screened positive for LD with each test are
given below in Table VII. As shown, the Rametrix-based
screens can be used to identify additional patients with a LD
molecular signature in urine. The simple screen identified

Figure 4. DAPC results for LD-Positive, Healthy, ESKD and BCA datasets, individually, for (a) Goldindec baselined data and five PCs to build
the DAPC model, (b) Goldindec baselined data and 29 PCs, (c) ISREA node set no. 1 baselined data and five PCs, and (d) ISREA node set no.
2 data and five PCs.

Table V. Leave-one-out results for identifying LD-positive patients against the LD-Negative group (healthy, ESKD, and BCA).

PCs Dataset variance explained, % Accuracy, % Sensitivity, % Specificity, % PPV, % NPV, %

Goldindec (five PCs) 95.7 70.0 60.0 74.6 51.4 80.7
Goldindec (29 PCs) 99.9 71.1 6.7 100 100 70.5
Goldindec (47 PCs) 99.96 79.4 73.3 82.1 64.7 87.3
ISREA node set no. 1 (five PCs) 96.9 65.0 76.7 59.7 46.0 85.1
ISREA node set no. 2 (five PCs) 98.5 88.7 83.3 91.0 80.7 92.4
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more of these urine specimens and belonging to the LD-
Positive group, suggesting that the comprehensive screen is
more selective.With this, over 30% tested positive for LD by
the Rametrix-based urine screen who had tested negative by
other means previously. In addition, over 65% of patients
who did not receive a previous test showed the LD mo-
lecular signature in their urine specimen. Graphical views of
clustering in DAPC plots in the presence of unknowns are
given in Supplemental Figure S10.

Discussion

Major findings from our study are summarized as follows.
Patients who were seropositive by the two-tier CDC standard
diagnostic test for LD had statistically significant changes in the
molecular composition of their urine that differentiated them
from normal, healthy individuals, as determined by Raman
spectroscopy and Rametrix analyses of urine specimens; the
molecular signature of LD in urine is complex, comprising
more than 31 Raman shifts with major contributions and
several more with minor contributions; urine specimens from
patients who were considered to be LD-positive with other
laboratory tests (not the two-tier CDC standard diagnostic
test) were statistically similar to specimens of urine from
patients who tested positive with the CDC standard two-tier
test; several patients who were LD-negative (with two-tier or
other LD diagnostic tests) had urine spectral changes similar
to those who were LD-positive, but it is possible they had
been previously infected but were not reactive at the time of
assay (i.e., presented for long-term chronic fatigue); the
molecular changes seen in the urine of LD-positive patients
was not only statistically different from the urine of normal,
healthy individuals, but also from the urine of patients with
other genitourinary tract pathologies, including ESKD and

BCA, suggesting the LD-associated urine molecular signature
appears to be unique.

Raman spectral baselining procedures can play a critical
role in chemometric analyses. Here, we found the Goldindec
algorithm and ISREA could both locate a molecular signature
for LD. ISREA was able to return similar or better prediction
accuracies in DAPC models with fewer PC inputs.

With ISREA, the location of node placements is critical and
can impact chemometric model performance.

As noted in the Introduction to this paper, current serodi-
agnostic methods for diagnosis of LD fall short of needs (rapid and
early detection), may have unsatisfactory sensitivity/specificity/
predictive value,76 can be costly (>$200), and require multiple
invasive blood collections over a period of several weeks.

There have been a number of studies, over the past
30 years, which have reported changes in the composition of
urine that may have reflected the presence of LD. Early
studies40,41 looked for pathogen-related proteins in urine;
these studies were not sufficiently definitive to result in
laboratory use, but did encourage continued investigation that
could lead (eventually) to clinical application of these methods.
Magni et al.42 showed that a molecular marker, the outer
surface protein A C-terminus peptide (OspA), of the path-
ogen could be detected in the urine of patients with early,
active infections with nanotrap technology. Levels of OspA
declined with clinical recovery, suggesting that this testing
procedure could have value in detection and management of
early infections (i.e., use or non-use of antibiotics). This test
has been commercialized (Nanotrap, Ceres Nanoscience,
USA); the extent of clinical use is difficult to discern from the
literature. The recent study by Pegalajar-Jurado et al.39 showed
that LD urine could be differentiated from non-LD urine using
advanced metabolomic analysis, using liquid chromatography/
mass spectroscopy. In the Pegalaiar-Jurado et al.39 study,
changes in metabolism, related to infection, were shown by
alterations in urine metabolites (including alterations in tryp-
tophan metabolism). These findings agreed with our obser-
vations, which identified changes tryptophan and other
aromatic compounds as part of the LD molecular signature.

Thus, access to a simple, rapid, economical, noninvasive,
and accurate test would be a significant and meaningful step in
detection and management of LD. We believe the Rametrix-
based urine screening procedure, described here, fulfills these
needs. Our data show that a molecular signature, associated
with serologically confirmed LD, can be detected, and this

Table VI. Leave-one-out results for identifying healthy volunteers against LD-positive, ESKD, and BCA patients.

PCs Dataset variance explained, % Accuracy, % Sensitivity Specificity, % PPV NPV, %

Goldindec (five PCs) 95.7 80.4 86.7% 77.6 63.4% 92.9
Goldindec (29 PCs) 99.9 69.1 N/A 100 N/A 69.1
Goldindec (47 PCs) 99.96 79.4 60.0% 88.1 69.2% 83.1
ISREA node set no. 1 (five PCs) 96.9 82.5 90.0% 79.1 65.9% 94.6
ISREA node set no. 2 (five PCs) 98.5 86.6 86.7% 86.6 74.3% 93.6

Table VII. Percentage of the No-Test and Neg-Test groups
screening positive for LD with the simple and comprehensive
Rametrix-based urine screens.

Simple screena, % Comprehensive screenb, %

No-test group 75.6 65.9
Neg-test group 53.8 30.8

aThe simple screen is composed of LD-Positive and Healthy groups (Table III).
bThe comprehensive screen is composed of LD-Positive and LD-Negative
groups (Table V).
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molecular signature differentiates LD from urine specimens of
healthy individuals and from specimens of patients with
genitourinary pathologies, such as ESKD or BCA. Of course,
molecular signatures for other diseases (e.g., proteinuria and
urinary tract infections, among others) likely exist and could
be elucidated in future research. The extent to which these
may overlap with the LD molecular signature remains un-
known at this point. Broad comprehensive databases of urine
Raman spectra representing many pathologies would be useful
for this purpose. The research presented here is one of the
first proofs of concept of this approach to our knowledge.

Urine specimen collection (free catch) simply requires
urinating into a cup. Samples can be stored at room tem-
perature for up to 12 h before analysis. No processing (i.e.,
addition of chemical preservatives or centrifugation) of the
urine specimen is needed and total time required to scan the
sample repetitively (10–15 repeat scans/sample) and generate
a spectrum for computational analysis is <15 min, including
sample handling time (transfer from urine collection cup to
1.5 mL sample vial). A miniscule (<2 mL) volume of urine is
required for analysis and scanning is nondestructive. Samples can
be stored at low temperatures (<–30 oC for >30 days), thawed
and then scanned/re-scanned, as needed.45 Technical personnel
can be trained in a few hours to analyze specimens. The Raman
spectrometers used for these analyses are inexpensive (<US$
20000) and are commercially available. Clearly, the capital and
personnel costs of running Raman-based assays in laboratory
settings are modest (approximately US$50/sample), in com-
parison to urinemetabolomic screening (∼US$400/sample), and
serodiagnostic testing (>US$200/sample).

Our results are based on robust computational/statistical
analysis of Raman spectra and capitalize on our ability to
compare the characteristics of these spectra (at hundreds of
different Raman shifts) with extensive libraries of Raman
chemical reference spectra,77 urine metabolomics,78 and our
own Raman databases (235 normal, that is, healthy adult; 455
ESKD; and 74 BCA urine Raman spectra). We feel that access
to this database of specimens was a key to detecting statis-
tically meaningful results that we report here.

We are currently collecting data from more LD-positive
and LD-negative patients and conducting studies to further
identify major contributors to the LD molecular signature and
to enroll more LD-positive and LD-negative patients. We
acknowledge the ongoing controversies surrounding the
contribution of LD infection to persons experiencing chronic
fatigue. We believe the results of the current study are in-
dicative of a currently undefined systemic reaction to LD
infection, but we fully expect this systemic reaction could be
seen with other pathologies (e.g., myalgic encephalomyelitis/
chronic fatigue syndrome, proteinuria, and post-acute
COVID-19 long haul syndrome). We hope that our
methods may be used to help identify patients who would
benefit from various therapies directed at LD management,
but also other infectious or environmental diseases (e.g., other
tick-borne diseases, mold exposure, COVID-19, etc.). Our

ongoing work is also directed at determining if co-morbidities
may affect the LD molecular signature and results returned by
the Rametrix-based analysis.

Finally, from the point of view of the chemometric analyses
performed in this study, we found both Goldindec and ISREA
baselining beneficial, and we note that several of our prior
studies have made use of the Goldindec algorithm. Minimizing
the number of PCs used in building DAPC models has shown,
in our studies, to be beneficial to predicting outcomes of
unknown urine specimens. The ISREA baselining algorithm
was published recently,48 and much is still being learned about
its capabilities and use in chemometric analyses. In this study, it
allowed for similar or better predictive capabilities with
DAPC models with fewer PC inputs. However, this was
dependent on node placement, as evidenced by comparing
results from node sets no. 1 and no. 2. How the number of
nodes is selected and how they are placed most effectively
remains a topic of future research. In the current study, we
found that the absence of nodes from ∼1400–1800 cm�1 in
ISREA node set no. 2 enhanced that region of the spectrum,
and a higher concentration of nodes from 600–1000 cm�1

allowed the elimination of Raman shifts possibly unrelated to
LD (Supplemental Figure S1).

Conclusion

Here, we present results of studies conducted to determine if
Raman spectroscopy and Rametrix analysis of urine would
serve as a suitable screen for LD. Our results indicate there
are statistically significant changes in the urine of patients who
test positive for LDwhen their urine molecular composition is
compared to that of normal, healthy volunteers or patients
with genitourinary tract pathology. We believe our methods
could be easily applied as an accurate, rapid, and inexpensive
urine screen for LD.
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