
Submitted Manuscript

Applied Spectroscopy
2022, Vol. 0(0) 1–11
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/00037028211060853
journals.sagepub.com/home/asp

Raman Spectroscopic Detection and
Quantification of Macro- and Microhematuria
in Human Urine

William Carswell1, John L. Robertson2,3, and Ryan S. Senger1,3,4,5

Abstract
Hematuria refers to the presence of blood in urine. Even in small amounts, it may be indicative of disease, ranging from urinary tract
infection to cancer. Here, Raman spectroscopy was used to detect and quantify macro- and microhematuria in human urine samples.
Anticoagulated whole blood was mixed with freshly collected urine to achieve concentrations of 0, 0.25, 0.5, 1, 2, 6, 10, and 20%
blood/urine (v/v). Raman spectra were obtained at 785 nm and data analyzed using chemometricmethods and statistical tests with the
Rametrix toolboxes for Matlab. Goldindec and iterative smoothing splines with root error adjustment (ISREA) baselining algorithms
were used in processing and normalization of Raman spectra. Rametrix was used to apply principal component analysis (PCA),
develop discriminate analysis of principal component (DAPC) models, and to validate these models using external leave-one-out
cross-validation (LOOCV). Discriminate analysis of principal component models were capable of detecting various levels of mi-
crohematuria in unknown urine samples, with prediction accuracies of 91% (using Goldindec spectral baselining) and 94% (using
ISREA baselining). Partial least squares regression (PLSR) was then used to estimate/quantify the amount of blood (v/v) in a urine
sample, based on its Raman spectrum. Comparing actual and predicted (from Raman spectral computations) hematuria levels, a
coefficient of determination (R2) of 0.91 was obtained over all hematuria levels (0–20% v/v), and an R2 of 0.92 was obtained for
microhematuria (0–1% v/v) specifically. Overall, the results of this preliminary study suggest that Raman spectroscopy and che-
mometric analyses can be used to detect and quantify macro- andmicrohematuria in unprocessed, clinically relevant urine specimens.
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Introduction

The presence of blood in urine is abnormal and is frequently
associated with disease in the genitourinary tract (kidneys,
bladder, and male/female reproductive organs). The presence
of blood in urine (“hematuria”) may be suspected by obvious
red-brown discoloration of urine (macrohematuria). Small
amounts of blood (microhematuria) may not discolor urine or
be detected visually, but discovered with urinalysis in patients
displaying clinical signs of genitourinary disease. Detection or

suspicion of hematuria is invariably confirmed with other
medical tests, including urine sediment examination, bio-
chemical (dry chemistry, “dipstick”) assays, and multimodality
imaging.1–4

Hematuria can be caused by a large variety of diseases
(ranging, e.g., from bladder infections to cancer), injuries, or
even exposure to toxicants (such as the chemotherapeutic
agent cyclophosphamide).2,5,6 Testing for macrohematuria
and early intervention has been shown to be cost effective,7

but early, aggressive testing for microhematuria has not been
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shown to produce an increased health benefit (i.e., early
detection of disease) compared to the cost of screening at-risk
populations.8 Laboratory costs and technician time associated
with testing for hematuriamake generalized population screening
logistically and economically impractical. Here, we present a low
cost, low impact screening method for detecting both macro-
and microhematuria that relies on evaluation of urine using
Raman spectroscopy and chemometric methods implemented
with Rametrix software.9–14

Raman spectroscopy is a well-documented spectrographic
method of examining the molecular composition of both
solids and solutions.3,9,13,15,16 When examining even dilute
and complex aqueous solutions (such as urine),3,9–13,15–20

Raman spectroscopy may take on the order of seconds to
generate spectral data, with minimal spectral interference
from water. Analysis of aqueous solution spectra involves data
transformation in the form of baseline correction, truncation,
normalization, and statistical processing. These transforma-
tions help to eliminate various spectral artifacts such as au-
tofluorescence, photobleaching, cosmic spikes, and background
signals. Two baselining methods used in this study were the
Goldindec21 and iterative smoothing-splines with root error
adjustment (ISREA) methods.22 The Goldindec algorithm
provides an adaptable means to subtract background signals and
baseline Raman spectra.10,14,23 The recently developed ISREA
method has been optimized for full baseline fitting, even at the
ends of spectra.22 The ISREA method uses cubic splines to
connect knots (or “nodes”) placed at specific Raman shifts
throughout a spectrum. This has shown to allow optimization
of data analysis for presumed target molecules, and it may
provide modeling advantages by removing interference from
other, unrelated spectral data.22

Principal component analysis (PCA) and discriminant anal-
ysis of principal components (DAPC) are multivariate statistical
analysis methods for complex datasets. Previously, we reported
that these methods are useful in assessing the qualitative
similarity and difference between spectra.9,12,13 In particular,
PCA is an unsupervised method that serves to reduce data-rich
spectra from hundreds of intensity values into a small number
(e.g., 5–30) of principal components (PCs). Discriminate
analysis of principal components, on the other hand, is a su-
pervised algorithm that maps PCs to some characteristic of the
sample (e.g., levels of hematuria). This procedure is subject to
validation, and leave-one-out cross-validation (LOOCV) has
been used in several studies.With these results, metrics such as
overall accuracy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) are calculated. From
there, PCA and DAPC loadings represent Raman shifts that
distinguish groups of spectra from one another. These are
traced to individual molecules (using Raman shift databases)
that are involved in the disease pathology (e.g., heme associated
with hematuria).10–12

In addition to these chemometric methods, more direct
comparisons of spectra have been used to determine if sta-
tistically significant differences exist. One approach is to

calculate the total principal component distance (TPD) be-
tween two Raman spectra. With urine, this involves finding
the difference between each PC of a urine spectrum and the
corresponding PC of a control. This control can be the av-
erage spectrum of a stable chemical or formulation (e.g., the
urinalysis control Surine), or it could be the average spec-
trum of a sample at an initial time point. The TPD is then
calculated by summing the absolute values of these differ-
ences between PCs.10,11,14 Once TPD values are deter-
mined, statistical tests, including analysis of variance
(ANOVA) and pairwise comparisons, are applied to these
values to determine if/where statistically significant differ-
ences exist between groups of spectra. In the context of
analyzing urine specimens, this approach has been used to
determine if Raman spectra of urine from healthy volunteers
are statistically different from those of patients with chronic
kidney disease.11

Evaluating hematuria quantitatively is an important goal of
urinalysis, as the amount of blood in urine can be an important
diagnostic metric when determining cause, severity, and
etiology of the hematuria.1,6,8 We believe that generating a
calibration curve is critical when using Raman spectroscopy
to define quantitative values, but in cases where the mo-
lecular signature of the molecule or solution is complex,
creating meaningful calibration curves and standards can be
complex or ineffective.13 To address this complexity, partial
least squares regression (PLSR) can be useful in evaluating
complex datasets and correlating those datasets to quanti-
tative classifications.24 This approach was used here, in place
of a calibration curve, and used to generate a model that can
predict the amount of blood in a urine sample given its
Raman spectrum.

For this study, we hypothesized that both macro- and
microhematuria could be detected and quantified from Raman
spectral analysis of human urine and chemometric analyses.
Specifically, we sought to determine: (i) Are Raman spectra of
urine “spiked” with whole blood (i.e., a model of hematuria)
statistically different from those without the addition of blood
(i.e., no hematuria); (ii) can the presence of large amounts of
spiked blood (i.e., a model of macrohematuria) be distin-
guished from small amounts of spiked blood (i.e., a model of
microhematuria); and (iii) can the quantity of spiked blood
(i.e., the degree of hematuria) be quantified.

Materials and Methods

Informed Consent and Urine Specimen Collection

Informed written consent was obtained for the collection of
specimens from healthy volunteers affiliated with Virginia
Tech, under an institutional review board-approved pro-
tocol (VT-IRB 15-703). The hematuria dataset was com-
posed of urine specimens generated to simulate macro- and
microhematuria of varying levels of severity. In particular,
urine and blood were collected the same day from an
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informed, healthy volunteer. The urine specimen was
screened for hematuria using Multistix 10 SG urinalysis test
strips (Siemens, USA).

Hematuria Samples and Surine

Once confirmed the urine was free of blood, the “macro-
hematuria” samples were generated by mixing a 20% v/v solution
(4 mL urine with 1 mL of blood), then diluting with urine to
produce 10% and 6% volume of blood samples. “Micro-
hematuria” samples were generated by initially mixing a 2% v/v
solution (49 mL of urine with 1 mL of blood). Then, 1, 0.5, and
0.25% mixtures were obtained through dilutions with urine.
The resulting hematuria dataset contained urine samples with
no blood (0% v/v), microhematuria (0.25, 0.5, and 1%), and
macrohematuria (2, 6, 10, and 20%). This procedure was
performed once in this study. The synthetic urinalysis stan-
dard Surine (Dyna-Tek Industries, USA) was also analyzed and
used in this study as a control. We have found the Raman
spectrum of Surine to be similar to that of urine from healthy
volunteers10 stable over long periods of storage.12 Raman
spectra of Surine were collected at the time of collecting
spectra for the hematuria samples described above. The av-
erage Raman spectrum of Surine was used as a reference point
in the statistical analyses described later.

Raman Spectroscopy

Raman spectroscopy data were acquired using a Peak Seeker
dispersive Raman spectrometer (Agiltron, USA). Urine speci-
mens were analyzed as bulk liquid stored in 2 mL flat bottom
clear borosilicate glass vials (Thermo Fisher Scientific, no. 03-
391-16). The thickness of the vial wall was measured to be
0.78 mm with a digital caliper. Raman scanning was performed
using the spectrometer manufacturer’s liquid sample vial
holder apparatus, where the laser was positioned in contact
with the outer edge of the sample vial. Raman scans were
acquired at 785 nm, 100 mW laser intensity, 0.2 mm laser
spot size, 0.22 numerical aperture, 8 cm�1 spectral reso-
lution (manufacturer default), 15 s exposure time, and with a
15 s delay between scans. Spectra were acquired over a
200–2000 cm�1 range, and a dark scan was collected for
every sample. Spectral data were obtained and dark scans
subtracted using RSIQ software (Agiltron), and resulting
spectral files contained Raman intensity data every 1 cm�1.
Ten independent Raman scans were obtained per sample
analyzed, where for each scan, the sample vial was removed,
mixed (by vial inversion), and replaced in the sample vial
holder.

Raman Spectra Processing and Baselining

All spectral processing and statistical methods were per-
formed in Matlab R2018a and made use of the Rametrix Lite13

and Pro9 Toolboxes (available through GitHub). Acquired

Raman spectra were first averaged (among replicate scans) and
truncated between Raman shifts of 600–1800 cm�1. Next, the
scans were baselined, vector normalized, and wavenumber
corrected based on urea (aligned to 1002 cm�1). The recently
developed ISREA method22 was used for baselining, as was the
established Goldindec algorithm.21 These different baselining
algorithms were applied separately to the same dataset to
assess the impact each would have on the statistical analysis.
The Goldindec algorithm was used with the following options:
polynomial order of three, estimated peak ratio of 0.5, and
smoothing window size of five. Iterative smoothing splines with
root error adjustment involves the placement of baselining
knots or “nodes”. These are Raman shifts that anchor the cubic
spline baseline along the spectral data. Multiple sets of nodes
were tested to observe the effect changing baselining strategies
had on data output from the analysis and modeling. The first
node set (called the “ISREA node set 1”) was developed based
on the objective of selecting spectral regions with low signal and
variability throughout the dataset. The ISREA node set 2 was
constructed to subtract the Raman signal of Surine, the uri-
nalysis control. Finally, the ISREA node set 3 was a control
strategy that included 13 evenly spaced nodes from Raman
shifts 600 to 1800 cm�1. These nodes are given in Table S1
(Supplemental Material). Statistical analysis was performed
given spectral baselining with each set of ISREA nodes, as well as
with the Goldindec algorithm.

Analysis of Variance (ANOVA) and Pairwise
Comparison Tests

Statistical comparisons among spectra were performed by
first calculating the TPD of each urine spectrum relative to the
average spectrum of the urinalysis control Surine, as described
previously.10,11,25 With these data, ANOVA and pairwise
comparisons were performed, using Tukey’s honestly signifi-
cant difference (HSD)method. ANOVAwas used to determine
if the differences in Raman spectra between those specimens
with added blood and those without were statistically signifi-
cant. Further, the pairwise comparisons were used to establish
if the data provided significant differences between different
amounts of blood. The primary determination between the
samples was to differentiate between macrohematuria, mi-
crohematuria, and no blood (i.e., normal urine). Then, differ-
ences among the amounts of blood in the microhematuria
samples were determined by pairwise tests between each
combination of comparisons (0% versus 0.25%, 0% versus 0.5%,
0.25% versus 1%, etc.) to show the significance or lack thereof.
Statistical significance was defined as p < 0.05 in all cases.

Principal Component Analysis and Discriminate
Analysis of Principal Component Models

Principal component analysis was performed to reduce the
complex data of the spectra, identify outlier spectra, and
identify the Raman shifts with strong contributions (i.e.,
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dominant molecules/bond energies). The selected PCs were
then used in DAPC, and several models were built for each
dataset, where the number of PCs included was varied.
Specifically, DAPC models accommodating between two and
35 PCs were constructed for each dataset. These PCs rep-
resented between approximately 65% and 99.95% of the
dataset variance, respectively. All models were then validated
by external LOOCV as described below.

Partial Least Squares Regression

Partial least squares regression provides a measure of cor-
relation between complex data inputs and a quantitative
output. Here, PCs of processed spectra served as inputs and
the sample percent blood (v/v%) served as the output. Cal-
culations were performed in Matlab, and the output included
the PLS response (training data), the PLS prediction (testing
data), the percent variance explained, and the estimated mean-
squared prediction error for the dataset. Like DAPC models,
the PLSR procedure was also subjected to external LOOCV
(discussed below) to assess predictive capabilities given
spectra not used to build the model. Goodness of fit results
for training and testing data were returned as coefficient of
determination (R2) values.

External Leave-One-Out Cross-Validation

External LOOCV was performed for PCA/DAPC models
with the Rametrix Pro Toolbox9 and with custom scripts for
PLSR. Discriminate analysis of principal component models
built with different numbers of PCs was assessed individually.
Predictions were tabulated at the end of the routine to cal-
culate metrics of overall prediction accuracy, sensitivity,
specificity, PPV, and NPV as described previously.12 The
external LOOCV was also applied to PLSR predictions. Here,
one sample was systematically left-out of the PLSR model
building and was used as the testing dataset. The procedure
was performed over the entire dataset, and the coefficient of
determination (R2) was calculated between all PLSR-predicted
and actual percent blood values for every sample.

Results

Raman Spectra and Baselining Methods

Raw Raman spectra were processed by Raman shift truncation
(600–1800 cm�1), baselining, and vector normalization. The
Goldindec and ISREA baselining algorithms were applied to all
spectra, and three ISREA node sets were used (see Materials
and Methods; Table S1, Supplemental Material). A repre-
sentative (chosen randomly) averaged and truncated urine
spectrum is shown in Fig. 1a and b. Baseline fitting with the
Goldindec algorithm and ISREA method with node set 1 is
shown in Fig. 1a. The resulting vector normalized (i.e.,
transformed) spectra are shown in Fig. 1b. The Goldindec

algorithm leveled the spectrum endpoints as well as the lowest
mid points. The ISREA algorithm with node set 1 resulted in
significantly different normalized signal intensities (compared
to Goldindec) in the Raman shift regions of 1050–1250 cm�1

and 1590–1750 cm�1 Raman shifts (Fig. 1b).
The influence of added blood on the urinalysis control

Surine spectrum is shown in Fig. 1c, where representative
spectra with 0, 2, and 6% (v/v) blood were added. In Fig. 1c,
spectra were baselined with the Goldindec algorithm but not
vector normalized, and regions of observed Raman intensity
changes were labeled one through five. Heme and red blood
cell Raman bands have been identified in the literature20,26 at
(among others) Raman shifts: 669, 750, 752, 999, 1122, 1210,
1444, 1542–3, 1579, and 1614–7 cm�1. As evident in Fig. 1c,
our analysis of dilute blood in urine did not return strong in-
tensities at these Raman shifts, except for 1614–7 cm�1. Region 2
(∼1002 cm�1) of Fig. 1c most closely correlates with urea in
urine.10 With added blood volume, this signal (1002 cm�1) was
diluted significantly. With this, we also observed decreases in
signal intensity at the other labeled regions of the spectra (Fig. 1c)
but to different degrees. No large signal increases from added
blood were evident over the 600–1800 cm�1 Raman shift range
analyzed (Fig. 1c). However, the ratios of the Raman in-
tensities in regions one to five (and others not identified
here) changed differentially with added blood. For example,
in Fig. 1c, the ratio of the signals between regions five and
two was ∼42%, with 0% blood added. This ratio increased to
∼59% with 6% blood added. We sought to build chemo-
metric models in this research that could identify these
relationships and relate them to hematuria levels qualita-
tively (DAPC) and quantitatively (PLSR).

We also examined whether the choice of baselining method
would influence the accuracy of these DAPC and PLSR models.
The analysis of Surine shown in Fig. 1c was repeated given
ISREA baselining, and results are shown in Supplemental Figs.
S2–4. Spectra given 0, 2, and 6% blood are shown in
Supplemental Figs. S2 through S4. These illustrate that the
change in ratios, described for Fig. 1c, is baseline dependent.
Further, the total range of Raman signal at each Raman shift is
given in Fig. 1d for Goldindec baselining and in Supplemental
Figs. S2 through S4 for ISREA baselining.

Finally, we have included Goldindec baselined scans of
Surine and an empty vial together in Supplemental Fig. S5. This
highlights both the real Raman signal being acquired from
Surine, particularly the strong urea signal (1002 cm�1), and the
background fluorescence that was unable to be subtracted
through dark scan subtraction and baselining, particularly be-
tween 600–950 cm�1. In addition, most of the data rich portion
of the spectra belonging to Surine (and urine) occurs around
1120–1200 cm�1, which can be associated with carbohydrates,
collagen, and carotenoids,26 and between 1300–1800 cm�1. In
particular, the 1590–1750 cm�1 region shows significant differ-
ences between Surine and the empty vial control (Supplemental
Fig. S5). This region is dominated by protein assignments,
namely related to aromatic amino acids,26 and those identified
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for blood mentioned earlier. Next, we sought to determine
whether chemometric models could be used to predict the
presence and level of hematuria in urine.

We first applied the Goldindec algorithm to all analyses due
to our prior success with this algorithm and the popularity of
polynomial-based baselining algorithms.27 This was done in
the next section, Analysis of All Hematuria Samples, which
included the no blood (0% v/v), microhematuria (0.25–1% v/
v), and macrohematuria (2–20% v/v) samples. The ISREA
method was implemented to further resolve the no blood and
microhematuria samples in the following Analysis of No Blood
and Microhematuria section of the Results.

Analysis of All Hematuria Samples

Statistical Analyses. Total principal component distance data10

were generated from processed spectra baselined with the
Goldindec algorithm. First, ANOVA was performed these
TPD data given sample classifications of macrohematuria,
microhematuria, and no blood. Statistical significance (p <
0.05) was observed for differences among these classes of
spectra. Next, statistical significance was also observed when
the analysis was performed based on the volume of blood
added to the urine samples (i.e., 0%, 0.25%, 0.5%, 1%, 2%, 6%,
10%, and 20% v/v).

From here, pairwise comparisons were performed. For
comparison of microhematuria, macrohematuria, and no
blood classifications, all pairwise comparisons returned sta-
tistical significance (Supplemental Table S2). For the blood
volume classifications, 16/28 (57%) of the comparisons showed
statistical significance (Supplemental Table S3). This number
suggested that distinguishing among blood volume classifica-
tions (e.g., 0%, 0.25%, and 1%) in further modeling may be
limited. In addition, the number of statistically significant
pairwise comparisons was likely limited by the population size
of this initial proof of concept study.

Classifications with PCA and DAPC

Principal component analysis and DAPCwere performed with
Rametrix LITE on the spectral data using both classifications
mentioned above. The PC loading data for this analysis are
provided in the Supplemental Material. The DAPC results for
both classifications are given as cluster plots in Fig. 2. Here,
DAPC results were generated using 19 PCs (representing
99.4% of the dataset variance) of the spectral data. With 19
PCs, 19 canonical dimensions were created by the DAPC
analysis. The first three dimensions are shown in Fig. 2a and
two in Fig. 2b to demonstrate clustering, where clusters are
indicative of similar processed Raman spectra. Cluster separation

Figure 1. Raman spectra of urine and Surine with hematuria. (a) An unprocessed urine spectrum with Goldindec and ISREA (node set 1)
baselining, (b) Resulting vector normalized transformed spectra, (c) Goldindec baselined spectra of Surine with added blood (0, 2, and 6% v/
v) and highlighted regions (1–5) of observed spectral intensity changes, (d) The range of signal intensities (shaded region) at each Raman shift
between 600–1800 cm�1 for urine samples, all levels of blood (0–20% v/v), and Goldindec spectral baselining.
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with some overlap was achieved between macrohematuria,
microhematuria, and no blood in Fig. 2a, with the micro-
hematuria cluster appearing between those of macrohematuria
and no blood along the first canonical. We were unsure why
the no blood group separated along Canonical 2 in Fig. 2a and b,
but it is noted that the groupwas not separated along Canonical
1, which showed more importance for separating clusters in
both cases. For the analysis by blood volume, in Fig. 2b, the
samples clustered from left to right along canonical one ac-
cording to increasing blood volume concentrations. The
DAPC model had no knowledge of the blood concentrations
during model building; it was only informed that the groups
were different. The arrangement according to increasing

blood concentration from left to right along Canonical 1
validates blood concentration was responsible for the sep-
aration among groups, rather than random or non-specific
signal/fluorescence.

Next, Rametrix PRO was used to perform external
LOOCV on the DAPC model shown in Fig. 2a and determine
prediction metrics for unknown urine samples. Results are
shown in Table I for each classification. Prediction accuracy
exceeded 90% for classifying an unknown urine sample as
“macrohematuria,” “microhematuria,” or “no blood” (Table
I). However, some metrics (e.g., sensitivity for classifying a
sample as no blood) failed to reach 90%. The analysis was
repeated for DAPCmodels built with fewer PCs. First, six PCs

Figure 2. DAPC plots of hematuria classifications. (a) Macrohematuria, microhematuria, and no blood and (b) percent blood (v/v) of each
urine sample. DAPC was performed with 19 PCs, representing 99.4% of spectral dataset variance.

Table I. DAPC External LOOCV Results for Hematuria Status Classification.

Classification Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

DAPC model built with 19 PCs (99.4% of dataset variance)
No Blood 94 80 100 100 93
Microhematuria 91 97 86 82 98
Macrohematuria 96 93 97 93 97
DAPC model built with six PCs (98.7% of dataset variance)
No Blood 90 78 95 87 92
Microhematuria 82 97 72 69 98
Macrohematuria 90 93 88 80 96
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were chosen (representing 98.7% of the dataset variance).
These results are also shown in Table I. Overall prediction
accuracies for samples classified as no blood and macrohematuria
exceeded 90%. This was about 82% for microhematuria. Finally,
for a DAPC model built with three PCs (representing 94.7%
of the dataset variance), the overall prediction accuracies
were 78%, 74%, and 83% for no blood, microhematuria, and
macrohematuria, respectively, and they were similar for a
model built with two PCs. However, given the three possible
classifications for an unknown urine sample (i.e., no blood,
microhematuria, or macrohematuria), these models far
exceeded the random chance correct prediction rate of 33%.

Partial Least Squares Regression

To return a quantitative value of hematuria based on the
Raman spectrum for a sample, PLSR with external LOOCV
was implemented. Results are shown in Fig. 3, with the line of
regression fit showing the correlation between the Raman
measurement predicted values (from PLSR and external
LOOCV) and the actual blood percent volume in urine samples.
The coefficient of determination (R2) was greater than 0.9
when considering all samples (i.e., no blood, microhematuria,
and macrohematuria), as shown in Fig. 3a. However, the
correlation for no blood and microhematuria samples only (i.e.,

0–1% blood v/v) was much less (R2 = 0.285), as shown in Fig. 3b.
This R2 value suggests this PLSR model performs better for
macrohematuria than for blood volumes below 1%. The mi-
crohematuria region is important for accurate measurements
by Raman spectroscopy as blood may not be visible by visual
inspection at these levels. Thus, additional data analysis
techniques were explored for better quantifying Raman
spectra of no blood and microhematuria samples.

Analysis of No Blood and Microhematuria Samples

To improve the determination of percent blood in urine, in
the 0–1% v/v range, by Raman measurements, we employed
ISREA baselining with node sets one through three in addition
to the Goldindec algorithm. The baseline fits and resulting
vector normalized spectra for all baselining algorithms used
are shown in Fig. 1 and Fig. S1 (Supplemental Material). The
overall goal of the following approach was to improve the
correlation between Raman measurements and actual percent
blood in urine specimens (R2 = 0.285). As apparent in Fig. 1
and S1 (Supplemental Material), the choice of node set for
ISREA can transform Raman spectra significantly. Regions of
the spectra can be emphasized/minimized, and we sought to
determine whether this could be used to resolve the no blood
and microhematuria region of the dataset.

Figure 3. Raman measurement PLSR external LOOCV predictions versus actual percent blood in urine samples (v/v). (a) Over all hematuria
samples and (b) for no blood and microhematuria (0–1% blood volume).
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Statistical Analyses

The ANOVA results for the comparison of no blood versus
microhematuria samples (i.e., with macrohematuria samples
excluded) showed statistical significance (p < 0.001) for each
ISREA node set. Pairwise comparisons, however, differed
given the different baselining methods, and results are given in
Supplemental Table S4. In summary, the Goldindec and ISREA
node set two algorithms each returned 1/6 (<17%) pairwise
comparisons with statistical significance (p < 0.05). Iterative
smoothing splines with root error adjustment with node set 3
did not return any with statistical significance, and ISREA with
node set 1 returned 5/6 (>83%)with statistical significance. This
provided strong evidence that the choice of baselining method
could influence the detection of microhematuria. We have
interpreted the results to suggest that ISREA node set 1

removes or reduces spectral data which otherwise conflates
other data points. While all baseline methods led to statistical
separation between no blood and microhematuria samples,
only ISREA node set 1 showed the ability to differentiate be-
tween different blood volumes at the microhematuria level.

Figure 4. DAPC plots to distinguish between no blood and microhematuria given different spectral baselining. (a) Goldindec algorithm, (b)
ISREA node set 1, (c) ISREA node set 2, and (d) ISREA node set 3.

Table II. DAPC External LOOCV Results Identification of Microhematuria.

Baselining method PCsa Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Goldindec 8 91 100 78 86 100
ISREA node set 1 12 94 100 86 91 100
ISREA node set 2 9 90 76 100 100 85
ISREA node set 3 20 86 97 70 82 95

aThe number of PCs included represented 99% of the dataset variance.

Table III. PLSR external LOOCV correlations (R2) for raman
measurements and microhematuria percent blood volumes (0–1%).

Baselining method R2

Goldindec 0.876
ISREA node set 1 0.920
ISREA node set 2 0.691
ISREA node set 3 0.547
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Classifications with PCA and DAPC

Again, PCA and DAPC models were built but only included
the no blood and microhematuria samples. Discriminate
analysis of principal component clustering results are shown in
Fig. 4 for the Goldindec and all ISREA baselining methods.
Differences in cluster separations were apparent, especially
with ISREA node set 3, which showed considerable overlap.
Each DAPC model in Fig. 4 was built with the number of PCs
required to represent 99% of the dataset variance. Next,
external LOOCV was applied to determine prediction met-
rics for distinguishing whether an unknown urine sample
belonged to the no blood or microhematuria classification.
These results are shown in Table II. Both the Goldindec al-
gorithm and ISREA node set 1 exceeded 90% prediction
accuracy and showed 100% sensitivity and NPV. The ISREA
node set 1 showed improved specificity and PPV metrics. The
ISREA node set 2 method showed 90% overall accuracy with
100% specificity, and ISREA node set 3 showed the least
accurate predictions.

Partial Least Squares Regression

The PLSR correlations (R2) between Raman measurements,
no blood, and microhematuria percent blood concentrations
are given in Table III. These were generated from external
LOOCV of the PLSR model. Of note the Goldindec algorithm

improved from an R2 of 0.285 to 0.876 when including all
hematuria samples (Fig. 3) or only no blood and micro-
hematuria (Table III). This demonstrates how an initial DAPC
classification of hematuria (Fig. 2a) may be useful in determining
which PLSR model to apply. The ISREA node set 1 out-
performed the Goldindec algorithm slightly in Table III. The
specific PLSR results for ISREA node set 1 are shown in Fig. 5.
The effect from number of PLS components used is shown in
Fig. 5a. For the purposes of this analysis, 11 components were
chosen, as this was found to maximize the percent variance
explained as well as improve our prediction capabilities. The
PLSR model training is shown in Fig 5c (R2 = 0.935), and the
PLSRmodel testing results with external LOOCV is given in Fig.
5d (R2 = 0.920). While the ISREA node set 1 generated the
highest R2 value among the baselining methods tested, it is clear
that the choice of node set weighs heavily on the predictive
capability of a PLSR model given Raman spectra inputs.

Discussion

The use of Raman spectroscopy for detection and quantification
of hematuria with high accuracy and low cost has important
implications, including near-real time testing at points of patient
care, low cost/test, and accuracy to guide clinical decisions. This
proof of concept study demonstrated the capacity to detect and
quantify macro- and microhematuria in dilute urine with Raman
spectroscopy and chemometric analyses. We focused here on

Figure 5. PLSR modeling results for no blood and microhematuria. (a) Percent variance as a function of PCs used, (b) Estimated mean
squared prediction error (MSPE) as a function of PCs used, (c) PLSR model training, and (d) PLSR external LOOCV model testing
results.
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the impact of the predictive capabilities of PCA–DAPC
(qualitative) and PLSR (quantitative) given different spectral
baselining methods, and how statistical tests (ANOVA and
pairwise comparisons of TPD data) can help inform predictive
capabilities of these models. The impact of baselining algo-
rithm, on the predictive capabilities of a DAPC or PLSRmodel,
was demonstrated. Choosing a reliable, application agnostic
method of baselining, such as Goldindec, has its advantages,
but choosing a method that has more customization options,
such as ISREA, can improve the outcome.

The Agiltron Peak Seeker Raman spectrometer used in
this study is relatively low-cost, low-profile, and portable,
and the consumable clear borosilicate glass sample vials are
also low-cost and are a readily available standard item. It is
noted, however, that, in our experience, the choice of vial for
liquid Raman analysis can be critical. We have seen that glass
types can contribute fluorescence and Raman intensities to
the background signal. The specific vials used in this research
(Thermo Fisher Scientific, no. 03-391-16) minimized these
effects in our spectra (Supplemental Fig. S5); however, users
should be aware of the effects of glass chemistry, glass wall
thickness, and laser probe positioning when obtaining Raman
spectra of liquid samples, including urine. Approaches, such
as comparison to standards (like Surine in this research) can
help mitigate these effects, and we have seen that ISREA
baselining is effective at removing effects of residual fluo-
rescence from spectra.22

Conclusion

In summary, we were able to distinguish between macro- and
microhematuria with 96% overall accuracy and found that de-
termination of microhematuria was inaccurate for micro-levels
of blood (R2 = 0.28). By refining computational modeling to only
microhematuria levels of blood (<1% v/v) and incorporating
ISREA baselining, a high level of correlation (R2 = 0.92) was
achieved, leading to high predictive accuracy. Overall, this study
suggests that Raman spectroscopy, baselining, PCA, DAPC,
ANOVA, pairwise comparisons, PLSR, and external LOOCV can
be utilized to perform screening or rapid testing for the presence
of blood in urine, as well as identify the level of blood with high
accuracy. However, we acknowledge that this study only pro-
vides a first proof of concept for the technology. Only a single
blood draw and urine specimenwere used in this study. It is likely
that several large-scale studies will be required to detect he-
maturia from diverse sets of blood/urine samples, especially for
those associated with kidney, bladder, urinary tract, metabolic
diseases, and/or blood disorders. Further, the Raman shifts
utilized by our chemometric models were not based on
documented bands for heme groups and red blood cells in the
Raman literature. However, with a large enough knowledge base,
this type of Raman-based rapid screening technology could be
automated, enabling early hematuria detection while screening
urine for other diseases simultaneously.
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